最新2012年高考理科数学第二轮复习教案2

最新2012年高考理科数学第二轮复习教案2

ID:8686730

大小:711.00 KB

页数:10页

时间:2018-04-04

最新2012年高考理科数学第二轮复习教案2_第1页
最新2012年高考理科数学第二轮复习教案2_第2页
最新2012年高考理科数学第二轮复习教案2_第3页
最新2012年高考理科数学第二轮复习教案2_第4页
最新2012年高考理科数学第二轮复习教案2_第5页
资源描述:

《最新2012年高考理科数学第二轮复习教案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012届高考数学二轮复习专题二函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数

2、的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到

3、达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()ABCD答案:B解析:在选项B中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间上有四个不同的根,则-8-6-4-202468yxf(x)=m(m>0)答案:-8解析:因为定义在R上的奇函数,满足,所以,所以,由为奇函数,所以函数图象关于直线对称且,由知,所以函数

4、是以8为周期的周期函数,又因为在区间[0,2]上是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间上有四个不同的根,不妨设,由对称性知,.所以.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x为何值时,不等式成立.解析:

5、当时,.当时,.故时,.时,为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用216

6、0万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)解析:设楼房每平方米的平均综合费为元,依题意得:.则,令,即,解得.当时,;当时,,因此,当时,取得最小值,元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的

7、方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数,其中.(1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.解析:(1)由已知得,令,得,要取得极值,方程必须有解,所以△,即,此时方程的根为:,,所以当时,x(-∞,x1)x1(x1,x2)x2(x2,+∞)f’(x)+0-0+f(x)增函数极大值减函数极小值增函数所以在x1,x2处分别取得极大值和极小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。