2.3.4平面与平面垂直的性质学案-新课标人教版必修2

2.3.4平面与平面垂直的性质学案-新课标人教版必修2

ID:8670776

大小:154.00 KB

页数:3页

时间:2018-04-04

2.3.4平面与平面垂直的性质学案-新课标人教版必修2_第1页
2.3.4平面与平面垂直的性质学案-新课标人教版必修2_第2页
2.3.4平面与平面垂直的性质学案-新课标人教版必修2_第3页
资源描述:

《2.3.4平面与平面垂直的性质学案-新课标人教版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、学习目标:使学生掌握平面与平面垂直的性质定理;能运用性质定理解决一些简单问题;学习重点:平面与平面垂直的性质定理的应用学习难点:性质定理的证明一、合作探究1.问题1:黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?2.问题2:设,=CD,,AB⊥CD,ABCD=B,那么AB与平面的位置关系是什么?3.平面与平面垂直的性质定理:简记为:.4.问题3:已知平面,,,过点P作平面的垂线a,直线a与平面具有什么位置关系?5.问题4:如图,已知平面,,直线a满足,,试判断直线a与平面的位置关系.6.问题5:已知平面,,直线a,且,,a∥,a⊥AB,试判断直线a与平面的

2、位置关系.二、知识应用题型一:利用面面垂直性质定理求长度例1:如图平面⊥平面,在与的交线L上取线段AB=4,AC、BD分别在平面和平面内,⊥L,BD⊥L,AC=3,BD=12,求线段CD的长度。题型二:利用面面垂直性质定理证垂直如图:已知V是所在平面外一点,VB⊥平面ABC,平面VAB⊥平面VAC,求证:ABC是直角三角形。ABCDV练习:求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已知⊥r,⊥r,∩=l,求证:l⊥r.题型三:折叠问题已知直角ABC中,AB=AC=,AD是斜边BC上的高,以AD为折痕,将折起,使为直角,(1)求证:平面ABD⊥平面BDC

3、(2)求证:(3)求点A到平面BDC的距离(4)求点D到平面ABC的距离

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。