欢迎来到天天文库
浏览记录
ID:8670246
大小:95.00 KB
页数:27页
时间:2018-04-04
《湘教版七年级上第4章一元一次方程模型与算法全章教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.1一元一次方程模型教学目标1.在具体情景中感受方程作为刻画现实世界有效模型的意义。2.通过观察、归纳一元一次方程的概念。教学重、难点重点:体会方程模型的重要性,了解一元一次方程的概念。难点:正确理解方程作为解决实际问题的数学模型的作用。教学过程一、创设情境,展现方程是刻画现实生活的有效模型1.(出示投影1).如图是一个长方体形的电视机包装盒,它的底面宽为1米,长为1.2米,且包装盒的表面积为6.8平方米,求这个电视机包装盒的高。学生活动:学生分小组讨论.师生共同分析:设包装盒的高为x米,用代数式表示这六个长方形面积的和为(2x+2.4x+2.4)平方米,而我们已知这个包装盒的表面
2、积为6.8平方米,依题意得:2x+2.4x+2.4=6.82.投影课本P103的插图并提问:铅笔多少钱1枝?学生活动:分析等量关系,尝试列出如问题1一样的式子。教师活动:引导学生分析得到:4x+(x+4)=10-23.引入方程概念.⑴在等式2x+2.4x+2.4=6.8中,2,2.4,6.8叫已知数,字母x表示的数叫未知数。⑵我们把含有未知数的等式叫作方程,如:x+5=8,x-2y=6,3x+2y=120中,x、y都是未知数,这些等式都是方程。⑶像问题1和问题2那样,把所要求的量用字母x(或y等)表示,根据问题中的数量关系列出方程,这叫作建立方程模型。二、议一议,认识一元一次方程1.
3、展示出上述列出的方程:2x+2.4x+2.4=6.8;4x+(x+4)=10-2.2.学生活动:分组讨论,以上的方程有什么共同特点。3.组织学生进行全班交流,得出以上方程的特点是:⑴方程中不含分母或分母中不含未知数;⑵只含有一个未知数;⑶未知数的指数都是1。4.归纳一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的整式方程叫作一元一次方程。能使方程左右两边的值相等的未知数的值叫作方程的解,求方程的解的过程叫作解方程。5.学生活动:判断下列各式是不是方程,如果是,指出哪些是一元一次方程?如果不是,说明为什么?⑴5x-3=x+3,⑵2y2+3y-1=0,⑶x+y=5,⑷2x+1
4、,⑸x=3,⑹0.3x+2=x教师组织学生交流,共同评析。三、做一做,检验一个数是否为方程的解例:检验下列各数是不是方程x-3=2x-8的解?1.x=52.x=-2师生共同分析:解:1.把x=5代入方程左右两边.左边=5-3=2,右边=2×5-8=2左边=右边所以x=5是方程x-3=2x-8的解。2.把x=-2代入方程左右两边。左边=-2-3=-5,右边=2×(-2)-8=-12.左边≠右边所以x=-2不是方程x-3=2x-8的解。四、随堂练习课本P104练习1、2题.五、小结师生共同小结本节课学习的内容:1.实际生活中很多问题可以利用方程来解决。2.方程,一元一次方程,方程的解等概
5、念。六、作业课本P105习题4.1A组第1、2、3题.补充题:一、判断下列方程是不是一元一次方程.1.3x2-2x=4;2.x=5;3.=2x-1;4.2x+3y=0;5.x-3=;6.4x=5y.二、检验下列各小题括号里数是不是它们前面的方程的解.1.x=10-4x(x=1,x=2);2.x(x+1)=12(x=3,x=-4)。三、根据题意,列出方程1.在课外活动中,张老师发现同学们的年龄大多是13岁,就问:我今年45岁,经过几年你们的年龄正好是我年龄的三分之一。2.某班分成两个小组活动,第一组26人,第二组22人,若要将第一组人数调为第二组人数的一半,应从第一组调多少人到第二组?
6、4.2解一元一次方程的算法(第1课时)教学目标1.在现实的情景中理解等式的性质,并能正确运用等式的性质.2.运用移项法解一元一次方程.教学重、难点重点:等式的基本性质.难点:利用等式性质解方程.教学过程一、创设问题情境,引入等式的基本性质1.(出示投影1).⑴(一)班的学生人数等于(二)班的学生人数,现在每班增加2名学生,那么(一)班与(二)班的学生人数还相等吗?如果每班减少了3名学生,那么两个班的学生人数还相等吗?⑵如果甲筐米的重量=乙筐米的重量,现在把甲、乙两筐的米分别倒出一半,那么甲,乙两筐剩下的米的重量相等吗?学生活动:学生讨论得出结论⑴(一)班与(二)班无论是每班增加2名学
7、生还是每班减少3个学生,两个班的人数还相等;⑵甲,乙两筐剩下的米的重量相等.2.师生共同归纳得出等式的基本性质:(出示投影2)等式性质1:等式两边都加上(减去)同一个数(或同一个式),所得结果仍是等式.等式性质2:等式两边都乘以(或除以)同一个不为0的数(或同一个不是0的式子),所得结果仍是等式.用字母表示:如果a=b,那么a±c=b±c,ac=bc,(d≠0).3.让学生举几个例子说明等式的基本性质.二、想一想,利用等式性质解一元一次方程1.(出示投影3
此文档下载收益归作者所有