欢迎来到天天文库
浏览记录
ID:8592565
大小:135.00 KB
页数:4页
时间:2018-04-02
《2014人教a版高中数学必修四3.2《简单的三角恒等变换》教案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学
2、思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式
3、讲解本节内容.例1、试以表示.解:我们可以通过二倍角和来做此题.因为,可以得到;因为,可以得到.又因为.思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、;(2)、.证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.;.两式相加得;即;(2)由(1)得①;设,那么.把的值代入①式中得.思考:在例2证明中用到哪些数学
4、思想?例2证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数的周期,最大值和最小值.解:这种形式我们在前面见过,,所以,所求的周期,最大值为2,最小值为.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业: 《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的
5、方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1.11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式。你能根据下图回顾推导过程吗?cos(α-β)=cosαcosβ+sinαsinβcos(α+β)=cosαcosβ-sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβtan(α+β)=tan(α-β)=sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-
6、1=1-2sin2αtan2α=2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围。4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。5.三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中
7、,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式,cosα=cosβcos(α-β)-sinβsin(α-β),1=sin2α+cos2α,==tan(450+300)等。例题例1已知sin(α+β)=,sin(α-β)=,求的值。例2求值:cos24°﹣sin6°﹣cos72°例3化简(1);(2)sin2αsin2β+cos2αcos2β-cos2αcos2β。例4设为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0,求证:α+2β=。例5如图所
此文档下载收益归作者所有