欢迎来到天天文库
浏览记录
ID:8578938
大小:34.50 KB
页数:6页
时间:2018-04-02
《2012鲁教版九上3.4《确定圆的条件》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、主备课人项昌军授课人授课时间:2012年月日课题4.确定圆的条件教学目标知识目标1、了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三点作圆的方法;2、了解三角形的外接圆、三角形的外心等概念。能力目标1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题策略。情感、态度及价值观目标形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。重点及突出确定圆的条件难点及突破确定圆的
2、条件学情分析学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。教具课件教学过程学习内容学生的活动教师的活动第一环节:课前准备活动内容:布置学生在课前复习,回答如下的问题:(1)经过一点、两点、三点你能否画出一条直线吗?若能,可
3、以画出几条直线?(2)通过以上问题的回答,你有什么体会?(3)已知线段AB,求作线段AB的中垂线?实际教学效果:在回答“经过三点能否画直线”问题上出现分歧,部分回答“不能画出直线”或“可以画一条直线”或“以上两种情况都有可能”等。通过对问题的争论、回答,达到了预期目标,培养了学生学会与人合作,能与他人交流思维的过程和结果。第二环节:情景引入活动内容:学生小组讨论如下问题:某地区一空地上新建了三个居住小区A、B、C。现要规划一间学校,使学校到三个小区的距离相等,你如何选取这所学校的地点?第三环节:
4、实践探究,解决问题活动内容:参照教材提供的三个问题:①、作圆,使它经过已知点A,你能作出几个这样的圆?为什么有这样多个圆?②、作圆,使它经过已知点A、B,你是如何做的?依据是什么?你能作出几个这样的圆?其圆心分布有什么特点?与线段AB有什么关系?为什么?③、作圆,使它经过不在同一直线的已知点A、B、C,你是如何做到的。你能作出几个这样的圆?为什么?④、你现在能解决课前的问题了吗?动手做一做?实际教学效果:学生对问题①、②中有多少个符合条件的圆能很快地回答出来,但学生对问题①中“为什么”的回答未能
5、抓住画圆的本质(定圆心、定半径)来回答;对问题③的探究用时比较长,重要原因是部分学生作了三条边的中垂线,对“为什么”的回答也未能抓住交点的唯一性及半径随着点的确定而确定进行回答。第四环节:练习提高活动内容:(1)完成课本随堂练习;(2)判断题:活动目的:①通过问题的思考讨论,有承上启下的作用,而先要解决这三个小区是否在一直线上。②引起学生回想圆的定义,得出作圆的关键是定圆心、定半径。③借助实际问题情景,激发学生解决问题的兴趣,为解决本节课的目标“确定圆的条件”和下环节的探究活动注入动力。活动目的
6、:以问题串的形式引导学生由易到难地开展探究活动、培养学生的探究精神,使学生体会在这一过程中所体现的归纳思想,从中探究出:①①经过三点一定可以作圆。()②任意一个三角形有且只有一个外接圆。()③三角形的外心是三角形三边中线的交点。()④三角形外心到三角形三个顶点的距离相等。()(3)如图是一块残缺的圆形木盖,现要重新制作一块与原来一样大小的圆形木盖,你是如何制作的?活动目的:(1)随堂练习——巩固找三角形的外心的方法,进一步体验“不在同一直线上的三点确定一个圆”的事实。另外也体会到三角形的形状对它
7、的外心位置带来的影响。(2)通过判断④和练习(3)目的是加深学生对结论的理解和应用,培养学生“用数学”的意识。实际教学效果:学生都能熟练完成随堂练习及判断题,收到了较好的教学效果。同时引导学生理解记忆判断④的结论,加深了对“三角形外心”的理解。但部分学生在完成练习(3)时遇到了困难,不会将问题转化成“找三角形外心——找出弧上三个点”的问题,说明这部分学生综合理解和运用知识能力还有待提高。第五环节:课堂小结活动内容:1、学生小组交流本节课学习的体会及要掌握的知识和方法;2、个人仍存在的问题;3、师
8、生共同完成如下的问题:3、师生共同完成如下的问题:不在同一直线上的三点(1)确定圆的条件——圆心、半径(2)锐角三角形在三角形的内部直角三角形外心的位置在斜边上钝角三角形在三角形的外部而三角形的外心具有的特征是:到三个顶点的距离相等,因它是三边中垂线的交点。实际教学效果:在短短几分钟的小结活动中,学生能畅所欲言,畅谈自己的收获和感受,比如有些同学谈到学会了找三角形的外心;考虑问题要全面;用数学知识可以解决一些实际问题;数学知识是环环相扣,紧密联系,每一知识点都要学好、理解好等。不在同一直线上的三
此文档下载收益归作者所有