欢迎来到天天文库
浏览记录
ID:853786
大小:251.03 KB
页数:23页
时间:2017-09-20
《双种群遗传算法的公交路线查询》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于双种群遗传算法的公交路线查询问题一、摘要本文探讨的是公交路线选择而开发的查询系统.以两站点之间所花时间的最小值作为主要目标函数,利用双种群遗传算法的原理建立公交路线选择数学模型,再通过MATLAB程序来实现整个流程和迭代,最终求出全局近似最优解,即最优权重线路,以起点和终点查询到近似的最优公交路线,并进行了误差分析,模型的评价与推广.问题一:仅考虑公汽线路,对数据进行初步分析和处理后,考虑到数据的复杂性和数据搜索范围的广度,我们应用比较成熟的双种群遗传算法建立数学模型.通过MATLAB强大的矩阵运算功能得到站点之间的邻接矩阵,用时间加权.其流程思想为基于双种群初始群体A、B,对染
2、色体进行整数编码,用竞争选择法选择出较优个体作为繁殖下一代的母体,依据选择性集成思想,等概率使用两点交叉法和区域交叉法对染色体进行交叉操作与使用邻居交换变异和两点交换变异进行染色体变异操作,并结合MATLAB反复迭代,最终给出了六对起始站与终点站的六条近似最优路线.该法扩大遗传算法的搜索范围,避免过早收敛.问题二:在数据处理上用时间加权把地铁站点和汽车站点统一化,可得所有站点之间的邻接矩阵.其求解原理与问题一相似,但由转车方式的不同生成了8种不同的适应度函数,再根据适应度函数来进行问题的求解.问题三:我们将任意两个站点之间的步行时间作为矩阵中相应位置的权,这时构建的邻接矩阵中的权就由
3、两站点之间公汽到公汽的时间,公汽到地铁的时间,地铁到公汽的时间,地铁到地铁的时间和两点之间的步行时间构成.但其求解原理与问题一相似,但由转车方式的不同就会生成不同的适应度函数,再根据适应度函数来进行问题的求解.双种群遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,具有自组织、自适应和自学习性.关键词双种群遗传算法;竞争选择法;离散赌轮选择算子;选择性集成思想.目录一、摘要1二、问题的重述1三、模型的假设1四、模型的建立与求解2五、模型的误差分析11六、模型的评价11七、模型的改进及推广11八、参考文献12二、问题的重述第29届奥
4、运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公汽,包括公汽、地铁等)出行.北京市的公汽线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题.针对市场需求,某公司准备研制开发一个解决公汽线路选择问题的自主查询计算机系统.为了设计这样一个系统(核心是线路选择的模型与算法),从实际情况出发,满足查询者的各种不同需求.需要研究的问题如下:1-1 123456起始站S3359S1557S0971S0008S0148S0087终点站S1828S0481S0485S0073S0485S3676问题二:同时考虑公汽与
5、地铁线路,解决以上问题.问题三:假设知道所有站点之间的步行时间,给出任意两站点之间线路选择问题的数学模型.其中基本参数设定:相邻公汽站平均行驶时间(包括停站时间):3分钟相邻地铁站平均行驶时间(包括停站时间):2.5分钟公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计价的票价为:0~20站:1元;21~40站:2元;40站以上:3元地铁票价:3元(无论地铁线路间是否换乘)注
6、:以上参数均为简化问题而作的假设,未必与实际数据完全吻合.公汽线路及相关信息见数据文件B2007data.rar.三、模型的假设1.转车的次数控制在2次以内;2.相邻公汽站平均行驶时间(包括停站时间):3分钟;3.相邻地铁站平均行驶时间(包括停站时间):2.5分钟;4.公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟);5.地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟);6.地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟);7.公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟);8.公汽票价:分为单一票价与分段计价两种,标记于线路后,其中分段计价的票价为:0~20站:1元,21
7、~40站:2元,40站以上:3元;9.地铁票价:3元(无论地铁线路间是否换乘);10.知道所有站点之间的步行时间.符号说明C:只考虑公汽线路的情况下,每个个体对应路线总长;D:考虑公汽和地铁线路的情况下,每个个体对应路线部长;:相邻公汽站平均行驶时间(包括停站时间);:相邻地铁站平均行驶时间(包括停站时间);:第k个个体所对应的适应度值;A:每个个体所对应的适应度比例;P:每个个体所对应的选择概率(适应度比例);:所有站点之间的步行时间;:表示转车换乘所耗
此文档下载收益归作者所有