(一)常用的分析方法

(一)常用的分析方法

ID:8537621

大小:122.00 KB

页数:13页

时间:2018-03-31

(一)常用的分析方法_第1页
(一)常用的分析方法_第2页
(一)常用的分析方法_第3页
(一)常用的分析方法_第4页
(一)常用的分析方法_第5页
资源描述:

《(一)常用的分析方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、(一)常用的分析方法  分析应用题常用的方法是综合法和分析法。1.综合法  综合法的解题思路是由已知条件出发转向问题的分析方法。其分析方法是:选择两个已知数量,提出可以解决的问题;再选择两个已知数量(所求出的数量这时就成为已知数量),又提出可以解决的问题;这样逐步推导,直到求出题目的问题为止。2.分析法  分析法的解题思路是从应用题的问题入手,根据数量关系,找出解这个问题所需要的条件。这些条件中有的可能是已知的,有的是未知的,再把未知的条件做为中间问题,找出解这个中间问题所需要的条件,这样逐步推理,直到所需要的条件都能从题目中找到为止。  以上这两种分析

2、方法不是孤立的,而是相互关联的。由条件入手分析时,要考虑题目的问题,否则推理会失去方向;由问题入手分析时,要考虑已知条件,否则提出的问题不能用题目中的已知条件来求得。在分析应用题时,往往是这两种方法结合使用,从已知找到可知,从问题找到需知,这样逐步使问题与已知条件建立起联系,从而达到顺利解题的目的。以下面这道应用题的分析为例,就可以看出两种分析方法结合运用的过程。  例某工厂计划全年生产机床480台,实际提前3个月就完成了全年计划的1.2倍。照这样计算,这个厂全年实际生产机床多少台?  分析过程用图64表示如下。  顺便再提一下,如果在分析这个题时,从条

3、件入手分析而不兼顾问题的话,很容易根据“计划全年生产机床480台”这个已知条件,先提出“计划每月生产机床多少台”这个问题,而提出的这个问题与解题是无关的,使分析偏离了所要解决的问题。从而再一次说明,在分析应用题时,一定要瞻前顾后,统观全题。(二)特殊的分析比较  有些应用题由于结构比较特殊,单纯用综合法和分析法分析还是有困难的,这就需要再掌握一些特殊的分析应用题的方法,这样有助于提高分析解答应用题的能力。常用的特殊的分析方法有以下几种。1.转化法  由于已知条件和问题的不同,转化的方法又可以细分为以下五种。  (1)把一事物转化成它事物  例妈妈买了3千

4、克桔子和4千克苹果,共花了23.4元。每千克苹果的价钱是桔子的1.5倍。每千克苹果和桔子各多少元?  这个题由于桔子和苹果的重量不相等,故而需要转化。“每千克苹果的价钱是桔子的1.5倍”是转化的条件。可以这样分析:买1千克苹果的钱可以买1.5千克桔子,那么买4千克苹果的钱可以买(4×1.5)千克桔子。从而可知,买苹果和桔子花去的23.4元钱相当于买(3+4×1.5)千克桔子的钱。通过这样的转化,题目就迎刃而解了。  解:23.4÷(3+4×1.5)=2.6(元)  2.6×1.5=3.9(元)  答:每千克苹果3.9元,每千克桔子2.6元。  (2)单位

5、“1”的转化  根据题意,先画出线段图(见图65)。   是不相同的,只有统一了单位“1”才能解题,这就需要进行单位“1”的转化。    答:这箱灯泡共有294个。  此题也可以余下的个数为“1”,用转化法求出总数是余下个数的几倍。这样转化解题的步骤要多,不如上面这样转化解题简便。  (3)运用“同样多”的概念进行转化  例二月份甲的奖金是乙的4倍。三月份甲比上月多得奖金8元,乙比上月少得奖金2元,三月份甲的奖金是乙的6倍。问三月份乙得奖金多少元?  由题意可知,二月份和三月份甲的奖金都是以乙的奖金数为“1”,但二月份和三月份乙的奖金数是不一样的,所以题

6、目中的“4倍”与“6倍”的单位“1”是不相同的,这就需要用转化法统一单位“1”。但是转化的方法与上题不同,为了便于说明,先画出图(见图66)。  已知二月份甲的奖金是乙的4倍,把甲二月份奖金4份中的每一份去掉2元,那么每一份余下的部分就与乙三月份的奖金同样多。这就是说,甲二月份的奖金比乙三月份奖金的4倍多8元。从而可知,乙三月份奖金的6倍比乙三月份奖金的4倍多16元。运用“同样多”的概念,就把“4倍”与“6倍”的单位“1”统一成以乙三月份的奖金为单位“1”了。  解:(2×4+8)÷(6-4)=8(元)  答:乙三月份的奖金是8元。  (4)利用常识进行

7、转化  例一个水塘里有一些龟和鹤,足数共120只,鹤的只数是龟的3倍。问龟、鹤各有多少只?  从题目的已知条件看,鹤与龟足数之和是120只,可倍数关系却给的不是足数之间的关系,这就需要把只数之间的倍数关系转化成足数之间的倍数关系。这种转化是应用常识进行转化的。因为龟有4只足,鹤有2只足,即2只鹤的足数与1只龟的足数相同。所以当鹤的只数是龟的3倍时,鹤的足数只是龟的1.5倍。至此题目就成为一道和倍问题,可以求出龟与鹤的足数,进而就可以求出龟与鹤的只数。  解:120÷(1+3÷2)=48(只)  48÷4=12(只)  12×3=36(只)  答:龟有12

8、只,鹤有36只。  (5)图形的转化  因为本文是谈应用题教学,所以关于图形的转

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。