欢迎来到天天文库
浏览记录
ID:8509021
大小:32.50 KB
页数:11页
时间:2018-03-30
《小学数学学习方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、哈尔滨一对一天材教育典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。(1)平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。加权平均数:已知两个以上若干份的平均数,求总平均数是多少。数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均
2、数。数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数;应用题,叫做和倍问题。解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根 据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?分析:大货
3、车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。列式为(115-7)÷(5+1)=18(辆),18×5+7=97(辆)(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数。(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方 向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律
4、解答。解题关键及规律:同时同地相背而行:路程=速度和×时间。同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙?分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是追击所需要的时间。列式28
5、÷(16-9)=4 天材教育哈尔滨一对一天材教育(小时)(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水 (9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。解题关键:要弄清每一步变化与未知数的关系。解题规律:从最后结果出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。解答还原问题时注意观察运算的顺序。若需要先算
6、加减法,后算乘除法时别忘记写括号。例某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,则四个 班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为168÷4,以四班为例,它调给三班3人,又从一班调入2人,所以四班原有的人数减去3再加上2 等于平均数。四班原有人数列式为168÷4-2+3=43(人)一班原有人数列式为168÷4-6+2=38(人);二班原有人数列式为168÷4-6+6=42(人)三班原有人数列式为168÷4-3+6=45(人
7、)。(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。解题规律:沿线段植树棵树=段数+1棵树=总路程÷株距+1株距=总路程÷(棵树-1)总路程=株距×(棵树-1)沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例沿公路一旁埋电线杆301根,每相邻的两根的间距是50米。后来全部改装,只埋了201根。求改装后每相邻两根的间距
8、。分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为50×(301-1)÷(201-1)=75(米)解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”天材教育哈尔滨一对一天材教育或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数 由两车“在离中点2千米处相遇”可知,甲车比乙车少行:2×2=4(千米)所以,乙车行的路程是:甲车行
此文档下载收益归作者所有