全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc

全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc

ID:83632864

大小:743.50 KB

页数:19页

时间:2024-09-04

上传者:L.M
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第1页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第2页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第3页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第4页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第5页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第6页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第7页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第8页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第9页
全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc_第10页
资源描述:

《全国各地2015年中考数学试卷解析分类汇编(第2期)专题36 规律探索.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

规律探索一.选择题1.(2015•鄂州,第10题3分)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是(  ) A.()2014B.()2015C.()2015D.()2014考点:正方形的性质.专题:规律型.分析:利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解答:解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.点评:此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键. 2.(2015广西崇左第12题3分)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有(  ) A.160B.161C.162D.16319  B【解析】第一个图形中三角形个数1+4,第二个图形中三角形个数1+4+3×4,第三个图形中三角形个数1+4+3×4+9×4,…………第n个图形中三角形个数1+4+3×4+9×4+……+3n-1×4,∴第四个图形中三角形个数为1+4+3×4+9×4+……+34-1×4=1+4+12+36+108=161.点评:规律探索性问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.3.(2015•山东德州,第5题3分)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为(  ) A.8B.9C.13D.15考点:规律型:数字的变化类..分析:根据每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,据此解答即可.解答:解:∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.故选:A.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是求出x的值是多少.4.(2015•山东泰安,第18题3分)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为(  ) A.135B.170C.209D.252考点:规律型:数字的变化类..分析:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.解答:解:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+919 =209故选:C.点评:此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律. 5.(2015年重庆B第10题4分)下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是()A.32B.29C.28D.26【答案】B【解析】试题分析:根据给出的几个图形我们可以得到黑色正方形的个数的一般规律为:2+3(n-1)=3n-1,则当n=10时,原式=30-1=29.考点:规律题.6.(2015•甘肃庆阳,第12题,3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(  ) A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)考点:坐标与图形变化-旋转..专题:规律型.分析:首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出An的坐标的规律,求出A2n+1的坐标是多少即可.解答:解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,19 ∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.点评:此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出An的横坐标、纵坐标各是多少. 7.(2015•济南,第14题3分)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是(  ) A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)考点:规律型:点的坐标.分析:设P1(x,y),再根据中点的坐标特点求出x、y的值,找出规律即可得出结论.解答:解:设P1(x,y),∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=﹣1,解得x=2,y=﹣4,∴P1(2,﹣4).同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…,∴每6个数循环一次.∵=335…5,∴点P2015的坐标是(0,0).故选A.点评:本题考查的是点的坐标,根据题意找出规律是解答此题的关键.8.(2015•烟台,第8题3分)如图,正方形ABCD的边长为2,其面积标记为,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外做正方形,其面积标记为,…,按照此规律继续下去,则的值为()19 A.B.C.D.考点:正方形中的规律型问题分析:根据面积公式可得解直角三角形可得以CD为斜边的等腰直角三角形的边长为所以…以此类推解答:故选C点评:本题应用正方形为模型,设计了一组规律型问题,其中用到等腰直角三角形的性质和面积计算二.填空题1.(2015•江苏盐城,第18题3分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为  .(用含n的代数式表示,其中n为正整数)考点:相似三角形的判定与性质.专题:规律型.分析:连接D1E1,设AD1、BE1交于点M,先求出S△ABE1=,再根据==得出S△ABM:S△ABE1=n+1:2n+1,最后根据S△ABM:=n+1:2n+1,即可求出S△ABM.解答:解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:n+1,∴S△ABE1:S△ABC=1:n+1,∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=n+1:2n+1,∴S△ABM:=n+1:2n+1,19 ∴S△ABM=.故答案为:.点评:此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.2.(2015·湖北省随州市,第15题3分)观察下列图形规律:当n= 5 时,图形“●”的个数和“△”的个数相等.考点:规律型:图形的变化类..分析:首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.解答:解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;19 由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.点评:此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.(2015·湖北省咸宁市,第15题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000 .考点:规律型:数字的变化类..分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.4.(2015•恩施州第16题3分)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连续出现n次,那么这一组数的第119个数是 15 .考点:规律型:数字的变化类..分析:根据每个数n都连续出现n次,可列出1+2+3+4+…+x=119+1,解方程即可得出答案.解答:解:因为每个数n都连续出现n次,可得:1+2+3+4+…+x=119+1,解得:x=15,所以第119个数是15.故答案为:15.点评:此题考查数字的规律,关键是根据题目首先应找出哪哪些部分发生了变化,是按照什么规律变化的.5.(3分)(2015•桂林)(第18题)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有 19 3•2n﹣1﹣1 个点.考点:规律型:图形的变化类.分析:根据前四行的点数分别是2=3•21﹣1﹣1,5=3•22﹣1﹣1,11=3•23﹣1﹣1,23=3•24﹣1﹣1,…,可得第n行有3•2n﹣1﹣1个点,据此解答即可.解答:解:∵2=3•21﹣1﹣1,5=3•22﹣1﹣1,11=3•23﹣1﹣1,23=3•24﹣1﹣1,…,∴第n行有3•2n﹣1﹣1个点.故答案为:3•2n﹣1﹣1.点评:此题主要考查了图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.  6.(4分)(2015•黔南州)(第18题)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为 4 .考点:规律型:数字的变化类..分析:根据报数规律得出甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,即可得出报出的数为3的倍数的个数,即可得出答案.解答:解:∵甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;∴50÷4=12余2,∴甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,∴报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需报到:9,21,33,45这4个数时,应拍手4次.故答案为:4.点评:此题主要考查了数字规律,得出甲的报数次数以及分别报数的数据是解决问题的关键.7.(2015•昆明第15题,3分)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒 29 根.考点:规律型:图形的变化类..分析:根据已知图形得出数字变化规律,进而求出答案.19 解答:解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.点评:此题主要考查了图形变化类,根据题意得出火柴棒的变化规律是解题关键.8。(2015年浙江衢州15,4分)已知,正六边形在直角坐标系的位置如图所示,,点在原点,把正六边形沿轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点的坐标是▲.【答案】.【考点】探索规律题(图形的变化类----循环问题);正六边形的性质;含30度角角三角形的性质.【分析】如答图,根据翻转的性质,每6次为一个循环组依次循环.∵,∴经过2015次翻转之后,为第336个循环组的第5步.∵,∴在中,.∴.∴在中,.∴.∴的横坐标为,纵坐标为.∴经过2015次翻转之后,点的坐标是.19 9.(2015•娄底,第14题3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是 m≤1 .考点:根的判别式.专题:探究型.分析:先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.解答:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.点评:本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键. 10.(2015•娄底,第15题3分)下列数据是按一定规律排列的,则第7行的第一个数为 22 .考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.11.(2015•本溪,第18题3分)如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I119 ;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是 ()2n+1ab .考点:中点四边形..专题:规律型.分析:利用菱形的面积为两对角线乘积的一半,得到菱形I1的面积,同理可得菱形I2的面积,根据规律可得菱形In的面积.解答:解:由题意得:菱形I1的面积为:×AG×AE=×=()3•ab;菱形I2的面积为:×FQ×FN=×(×)×(b)=()5•ab;…,∴菱形In的面积为:()2n+1ab,故答案为:()2n+1ab.点评:本题主要考查了菱形面积的计算和规律的归纳,利用菱形的面积为两对角线乘积的一半,是解答此题的关键.12.(2015•营口,第18题3分)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An﹣1为OA的n等分点,B1、B2、B3、…Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An﹣1Bn﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、Cn﹣1,当B25C25=8C25A25时,则n= 5 .考点:正方形的性质;二次函数图象上点的坐标特征.专题:规律型.分析:根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C2519 的坐标,代入解析式计算得到答案.解答:解:∵正方形OABC的边长为n,点A1,A2,…,An﹣1为OA的n等分点,点B1,B2,…,Bn﹣1为CB的n等分点,∴OA25=,A25B25=n,∵B25C25=8C25A25,∴C25(,),∵点C25在y=x2(x≥0)上,∴=×()2,解得n=5.故答案为:5.点评:本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.13.(2015•山东德州,第17题4分)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形AnBCnDn的面积为 a2 .考点:等腰梯形的性质;等边三角形的判定与性质;三角形中位线定理..专题:规律型.分析:首先求得梯形ABCD的面积,然后证明梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1,然后根据相似形面积的比等于相似比的平方即可求解.解答:解:作DE⊥AB于点E.在直角△ADE中,DE=AD•sinA=a,AE=AD=a,则AB=2AD=2a,S梯形ABCD=(AB+CD)•DE=(2a+a)•a=a2.如图2,∵D1、C1是A1C和BC的中点,∴D1C1∥A1B,且C1D1=A1B,∵AA1=CD,AA1∥CD,∴四边形AA1CD是平行四边形,19 ∴AD∥A1C,AD=A1C=a,∴∠A=∠CA1B,又∵∠B=∠B,∴∠D=∠A1D1C1,∠DCB=∠D1C1B,=,∴梯形A1BC1D1∽梯形ABCD,且相似比是.同理,梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1,相似比是.则四边形AnBCnDn的面积为a2.故答案是:a2.点评:本题考查了相似多边形的判定与性质,正确证明梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1是关键. 14.(2015•四川巴中,第20题3分)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015= ﹣ .考点:规律型:数字的变化类;倒数.专题:规律型.分析:根据差倒数定义表示出各项,归纳总结即可得到结果.解答:解:a1=3,a2是a1的差倒数,即a2==﹣,a3是a2的差倒数,即a3==,a4是a3差倒数,即a4=3,…依此类推,∵2015÷3=671…2,∴a2015=﹣.故答案为:﹣.19 点评:此题考查了规律型:数字的变化类,以及新定义,找出题中的规律是解本题的关键.15.(2015•四川成都,第23题4分)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则点An的坐标为 (3n﹣1,0) .考点:相似多边形的性质;坐标与图形性质;菱形的性质..专题:规律型.分析:先根据菱形的性质求出A1的坐标,根据勾股定理求出OB1的长,再由锐角三角函数的定义求出OA2的长,故可得出A2的坐标,同理可得出A3的坐标,找出规律即可得出结论.解答:解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(1,0).∵B1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(3,0).同理可得A3(9,0)…∴An(3n﹣1,0).故答案为:(3n﹣1,0).点评:本题考查的是相似多边形的性质,熟知相似多边形的对应角相等是解答此题的关键. 16.(2015江苏淮安第18题)将连续正整数按如下规律排列:第1列第2列第3列第4列第5列第1行1234第2行8765第3行9101112第4行16151413第5行1718192019 ………若正整数565位于第行,第列,则=。17.(2015江苏常州第17题2分)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;     12=5+7;6=3+3;     14=3+11=7+7;8=3+5;     16=3+13=5+11;10=3+7=5+5   18=5+13=7+11;…通过这组等式,你发现的规律是_______________________________________(请用文字语言表达).18.(2015•衡阳,第20题3分)如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An在x轴上,点B1、B2、…、Bn在直线y=x上,已知OA2=1,则OA2015的长为 22013 .考点:一次函数图象上点的坐标特征;等腰直角三角形.专题:规律型.分析:根据规律得出OA1=,OA2=1,OA3=2,OA4=4,OA5=8,所以可得OAn=2n﹣2,进而解答即可.19 解答:解:因为OA2=1,所以可得:OA1=,进而得出OA3=2,OA4=4,OA5=8,由此得出OAn=2n﹣2,所以OA2015=22013,故答案为:22013点评:此题考查一次函数图象上点的坐标,关键是根据规律得出OAn=2n﹣2进行解答. 19.(2015•安徽,第13题5分)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是 xy=z .考点:规律型:数字的变化类..分析:首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.解答:解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征. 20.(2015•永州,第18题3分)设an为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015= 2 .考点:尾数特征..分析:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.解答:解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,1+6+1+6+5+6+1+6+1+0=33,2015÷10=201…5,33×201+(1+6+1+6+5)=6633+19=6652.故a1+a2+a3+…+a2013+a2014+a2015=2.故答案为:2.点评:考查了尾数特征,本题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环.21.(2015•聊城,第17题3分)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、Pn,把△ABC分成 3+2(n﹣1) 个互不重叠的小三角形.19 考点:规律型:图形的变化类..分析:利用图形得到,△ABC的三个顶点和它内部的点P1,把△ABC分成互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成互不重叠的小三角形的个数=3+2×2,即分成的互不重叠的小三角形的个数为3加上P点的个数与1的差的2倍,从而得到△ABC的三个顶点和它内部的点P1、P2、P3、…、Pn,把△ABC分成的互不重叠的小三角形的个数.解答:解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、Pn,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1).故答案为3+2(n﹣1).点评:本题考查了规律型:图形的变化类:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后通过分析找到各部分的变化规律后直接利用规律求解.22.(2015•通辽,第17题3分)一列数x1,x2,x3,…,其中x1=,xn=(n为不小于2的整数),则x2015= 2 .考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.解答:解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,19 ∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.23.(2015•东营,第18题4分)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是 (,) .考点:一次函数图象上点的坐标特征;等边三角形的性质.专题:规律型.分析:根据题意得出直线BB1的解析式为:y=x,进而得出B,B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.解答:解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,1),AO∥A1B1,∠B1OC=30°,∴CB1=OB1cos30°=,∴B1的横坐标为:,则B1的纵坐标为:,∴点B1,B2,B3,…都在直线y=x上,∴B1(,),同理可得出:A的横坐标为:1,∴y=,∴A2(,),…An(1+,).∴A2015(,).故答案为(,).点评:此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.19  24.(2015•云南,第14题3分)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,PnMn的长为  (n为正整数).考点:三角形中位线定理.专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故PnMn=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答. 19

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭