欢迎来到天天文库
浏览记录
ID:83561849
大小:109.50 KB
页数:7页
时间:2023-10-21
《【红对勾】(新课标)2016高考数学大一轮复习 2.11.1导数与函数单调性课时作业 理.DOC》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
课时作业14 导数与函数单调性一、选择题1.下面为函数y=xsinx+cosx的递增区间的是( )A.(,)B.(π,2π)C.(,)D.(2π,3π)解析:y′=(xsinx+cosx)′=sinx+xcosx-sinx=xcosx,当x∈(,)时,恒有xcosx>0.故选C.答案:C2.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是( )A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)解析:依题意得,当x∈(-∞,c)时,f′(x)>0;当x∈(c,e)时,f′(x)<0;当x∈(e,+∞)时,f′(x)>0.因此,函数f(x)在(-∞,c)上是增函数,在(c,e)上是减函数,在(e,+∞)上是增函数,又af(b)>f(a).答案:C3.∀x1,x2∈(0,),x2>x1,y1=,y2=,则( )A.y1=y27 B.y1>y2C.y1y2.答案:B4.设函数f(x)=x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是( )A.10),当x-≤0时,有00且a+1≤3,解得1f(b)B.f(a)=f(b)C.f(a)17 解析:f′(x)=,当x>e时,f′(x)<0,则f(x)在(e,+∞)上为减函数,f(a)>f(b).答案:A二、填空题7.函数f(x)=1+x-sinx在(0,2π)上的单调情况是________.解析:在(0,2π)上有f′(x)=1-cosx>0,所以f(x)在(0,2π)上单调递增.答案:单调递增8.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.解析:∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a,又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=(-1)×4=-4.答案:-49.若函数f(x)=(a>0)为R上的单调函数,则a的取值范围为________.解析:若f(x)为R上的单调函数,则f′(x)在R上不变号,结合f′(x)=ex与条件a>0,知ax2-2ax+1≥0在R上恒成立,因此Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知00),则h′(x)=--<0,即h(x)在(0,+∞)上是减函数.由h(1)=0知,当00,从而f′(x)>0;当x>1时,h(x)<0,从而f′(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).11.已知函数f(x)=x3-ax2-3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)的单调区间.解:(1)对f(x)求导,得f′(x)=3x2-2ax-3.由f′(x)≥0,得a≤.记t(x)=,当x≥1时,t(x)是增函数,∴t(x)min=(1-1)=0.∴a≤0.(2)由题意,得f′(3)=0,即27-6a-3=0,∴a=4.∴f(x)=x3-4x2-3x,f′(x)=3x2-8x-3.令f′(x)=0,得x1=-,x2=3.当x变化时,f′(x)、f(x)的变化情况如下表:x-3(3,+∞)f′(x)+0-0+f(x)极大值极小值∴f(x)的单调递增区间为,[3,+∞),f(x)的单调递减区间为.1.函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数7 解析:由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,可得a<1,又g(x)==x+-2a,则g′(x)=1-,易知在x∈(1,+∞)上g′(x)>0,所以g(x)在(1,+∞)上为增函数.答案:D2.已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则以下判断正确的是( )A.f(2013)>e2013f(0)B.f(2013)f′(x),∴g′(x)<0,即函数g(x)在R上递减,∴g(2013)0,函数f(x)在(0,+∞)上单调递增,当a<0时,令g(x)=ax2+(2a+2)x+a,由于Δ=(2a+2)2-4a2=4(2a+1).①当a=-时,Δ=0,f′(x)=≤0,函数f(x)在(0,+∞)上单调递减.②当a<-时,Δ<0,g(x)<0,f′(x)<0,函数f(x)在(0,+∞)上单调递减.③当-0,设x1,x2(x10,所以x∈(0,x1)时,g(x)<0,f′(x)<0,函数f(x)单调递减,x∈(x1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.综上可得:当a≥0时,函数f(x)在(0,+∞)上单调递增;当a≤-时,函数f(x)在(0,+∞)上单调递减;7 当-
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处