资源描述:
《历年考研数学真题及答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
2011ὃẆᦪ⚪ᔁ⌱⚪1.y=(1)(-2)2(>-3)2(4)2A(1,0)B(2,0)C(3,0)D(4,0)2ᦪᑡ"}ᓫ"⌴$%1&'=0,5“=£%(=1,2,...)/0%ᑣ23ᦪ”k8£a,(x-irḄᦈ=>A(-l,l]B[-l,l)C[0,2)D(0,2]3.?ᦪ/(x)ᐹᨵC▤EFGᦪ%H/(x)>0%r(0)>0,ᑣ?ᦪz=/(x)ln/(y)ᙠ(0,0)ᜐNOQRḄSᐙᑖᩩWA/(0)>l,r(0)>0By(0)>l,r(0)<0C/(0)0D/(0)<1/(0)<0AI17.ᵬx),K(x)^Sᑖ?ᦪ%ᐸḄᭆ᳛),(X)qEF?ᦪ%ᑣ^ᭆ᳛ḄqAf\(x)/(x)B2/(X)F(X)Cf\(X)F(X)D/,(x)F(x)+/(x)f,(x)2222228.tXiY%HEXiEYᙠ%lU=max{x,y},V={x,y},ᑣE(UV)=AEUEVBEXEYCEUEYDEXEVC⚪9.y=£tan(0WxW?)Ḅ¡S=10.£ᑖxyy=e-*cosx¨©ᩩWy(0)=0Ḅ}^y=11.?ᦪF(x,y)=ª«%ᑣἠ|,C=12.Lq®☢xy^—+y2=ii±☢z=x+yḄe%²z³´ᔣ¶z2³·ᔣ¸¹^⌮»┐xᔣ%ᑣ½ᑖxzdx+xdy+^-dz=13.uC¾☢Ḅxy^/+3>2+/+2“¿+24+2)=4,Á´eᣚᓄ^yÃ+4zÃ=4,Älja=Æ}Ç⚪15È▲lim(⇪ᓃ2)ÌX16z=/(xy,yg(x)),ᐸÎ?ᦪfᐹᨵC▤EFÏGᦪ%?ᦪg(x)G%HᙠX=1ᜐNORg(l)=l,ÈÐ|dxdyv17Èxykarctanx-x=0ÑÒÓ᪷ḄSᦪ%ᐸÎk^Õᦪ18Ö×Ø1)ÙÚÛ´ᦪn,Ýᨵ—L22)%=l+L...+,-lnn(n=1,2,…),Ö×{}ᦈ=2n19áâ?ᦪf(x,y)ᐹᨵC▤EFÏGᦪ%Hf(l,y)=O,f(x,l)=O,{x,y)dxdy=a,ᐸÎ={(x,y)[O«x<1,0WyW1},æçDCè½ᑖI=0¿Ju(x,y)dxdyD20.%=(1,0,1)%a=(0,1,1)"a=(1,3,51Ñìᵫ0=(Laî)"13=(1,2,3)%,2323=(1,3,5)%ឋ⊤ò,জÈaÃঝaõ%ö2,3ᵫ÷%%,3ឋ⊤ò’11ஹ"-1T21.A^Æ▤Ó_▣,R(4)=2,HA00=00ஹT1,Jb(1)ÈAḄᱯýRiᱯýᔣÃ(2)ÈAâ%/>0þâ%1ÿ$2ᑖ⊤᪵ᙳ᪵ 1)ᦪḄᨬᜧᯠ" 2)E(M)D(a2)
32011#ᐰ%ắ'Ẇ)*ᐭ,-.ὃ0ᦪ,.0⚪2ᫀ4᪆.ஹ⌱8⚪1ஹூ2ᫀCூὃ<ᑖ᪆⚪ὃ=><Ḅᑨ@ABᑭᵨᑨ@><ḄE⌕ᩩHIJᐙᑖᩩHᓽMூ4᪆ᵫy=(x—1)(S.2)2(T.3)3(V.4)4MX1,2,3,4ᑖZy=(x—l)(x—2)2(X—3)3(x—4)4=0Ḅ.ஹJஹ^ஹ_`᪷bᦑᵫdᦪefgᦪhiḄᐵkMXy'(l)*0y'(2)=y'(3)=y'(4)=0y"(2)n0,/(3)=/(4)=0,y”(3)H0,)r(4)=0,ᦑ(3,0)Z.><2ஹூ2ᫀCூὃ<ᑖ᪆⚪ὃ=stᦪḄᦈvwx⌕yzᑮᦈv|}Ḅ~ᦪ⚗tᦪᦈvឋḄ.bᔠឋூ4᪆S“=£%(=1,2……)bstᦪ£4(S.1)”Ḅᦈv|}41k=\=188{%}ᓫb1ᡎ%=0,tᦪᦈvbMXtᦪஹ—Ḅᦈvn=ln=l|}R21bstᦪ—1)”Ḅᦈv|}R=l,ᦈv¡i¢(0,2)£ᵫ¤x=0¥¦tᦪ=1ᦈvbx=2¥¦tᦪ§ᦣMXᦈvw¢©0,2)3ஹூ2ᫀCூὃ<ᑖ᪆⚪ὃ=Jᐗgᦪ«ḄᩩHbABᝅᵨJᐗgᦪ«ḄᐙᑖᩩHᓽMூ4᪆ᵫZ=/(x)ln/(y)Xz°=_f(x)ln/(y),%'=³´()b)bz°=%/'”)f(y)/(y)/()S(y)-(·¸¹Zµ=/"(x)ln/(y),7f\y)r(o)ᡠ»zjr(o)=bzj/70)ln/(0),x=0/(0)x=0y=0y=0
4zjj/Wᒾ/*ÁÂy=OJ''⌕ÃÄgᦪz=/ÅxÂln/Å>'Âᙠ<Å0,0Âᜐ«ÄÉbÊ◤rÅoÂin/ÅoÂ>o,rÅ0Âin/ÅoÂ-rÅ0Â>011ᡠ»ᨵ/Å0Â>l,f"Å0Â>04ஹூᫀBூὃ<ᑖ᪆⚪ὃ=ÎÏᑖḄឋÐbABÑÒÎÏᑖḄᜧÉÓᓄ¢ÒÕÖḄ×ÏgᦪḄᜧÉᓽMூ᪆xwÅO,ÚÂ¥b0?@ABCᭆ᳛FGḄឋHூ᪆IJᭆ᳛FGḄឋHK£(X*K(X*+/2(X*^(X*N0RS/(x*T2(X*+U(x*6(X"Wᨴ(x*((x*|Y=1[\(*\(X*+](X*ὡ(X*
5$ᭆ᳛FGᦑ⌱(£>*8ஹூbᫀBூὃ6ᑖ᪆:⚪ὃ<@ABCᦪeᱯgḄhiឋHjik◤⌕ᐜo@ABCUVrsᜐᳮᨵwxḄᮣzឋூ᪆ᵫ|UV=max{X,y}min{X,y}=Xy[E(UV)=E(maxXT}minX,)=E(XF)=E(X)E(Y)ᦑ&⌱(B*Yஹ⚪TT9ஹூbᫀ1-\ூὃ6ᑖ᪆:⚪ὃ<Ḅjiᓽ[4ᑍ71nூ᪆S=f(y*dx=ftan2xdx=fsec2x-\dx=tanx-x|10ஹூbᫀy-sinxe~xூὃ6ᑖ᪆:⚪ὃ6ry2xzdx+xdy+—dzLsin?tcosf(cost+sin/)(-sin/)+costcost+——(cost-sint)d.sin2/cosfsin3f,2-sintcos-t----------+cos-t------at2213ஹூbᫀ-1ூὃ6ᑖ᪆:⚪ὃy+(Ey)2=2+62,ᑣE(XY2)=+)=;?+üஹb⚪15ஹூbᫀூὃ6ᑖ᪆K:⚪ὃ<▲Ḅjiÿ Ḅ▲ᐜᢥḄ▲ᔠᑭᵨᣚஹ"#$ᑣ&'ூ)᪆,fln(l+x)^7In(l+x)-x^ᔳ^;ᔳrrhm———-=hm1+———--BL"ᔙFߟ/B42xx)‘31x)lim—-1_^2x(\+x)2e=e
716ஹூᫀO(1,1)+O(11)ூὃQᑖ᪆,S⚪ᔠὃVWXᦪḄZBᐗ\ᦪ]^Ḅᩩ`a⌕ὃVὃcḄdefgᜧூ)᪆,ஹ=(xy,yg(x))y+(xy,yg(x))yg(x)oxd2z.=fu(j,yg(x))xy+l2(myga))yg(x)+f\(myg(x))xoxoy+£p(xyyg(x))xyg'(x)+ᨴ2(myg(x))yg(x)g(x)+£(m,yg(x))g'(x)ᵫ g(x)ᙠx=1ᜐ]v^gপ=1,xyg(l)=0ᦑ-,|}(l,gপ)+~(Lgপ)gপ+/}(l,gপ)dxdyx=l,y=1+£j(i,gপ)g'প+£,2(igd))gপg'প+£agপ)g'(D=/u(U)+/}.2(ll)17ஹூᫀᦇW1ᦇarctanX-x=0ᨵ᪷>1karctanx—x=0ᨵ᪷ூὃQᑖ᪆,S⚪ὃV᪷Ḅa⌕ᵨᑮ\ᦪᓫឋ¡¢£¤\ᦪḄឋ¥)⚪✌ᐜ§¨©Xᦪvᑮ\ᦪḄᓫ¡ᙠªᓫ¡¢«¬ᔲ¯°±Q²ᙠᳮḄᩩ`kk-X-x1ூ)᪆:µf(x)=karctanx-x,ᑣ/(0)=0,f'M=----y-l=----}-l+x1+x(1)¶<1,f\x)<0,/(x)ᙠ(8,+00)ᓫ⌴ºᦑ»/(X)Ḅ¼½¾x¿¾ᨵÀQÁᓽarctanx-x=0ᨵ᪷(2)k=1ᙠ(oo,0)Z(0,+»)¢ÆᨵÇ'(x)<0,ᡠ/Xx)ᙠ(oo,0)Z(0,+oo)ÉÊḄᓫ⌴ºË/(0)=0,ᦑ/a)Ḅ¼½ᙠ(-8,0)Z(0,+8)¾x¿ᙳÀQ(3)ு1—ÎÏf'(x)>0,/(x)ᙠ(JTÏ,JTÏ)¢ᓫÒÓË/(0)=0y/(x)ᙠ(ÔÕ,4^Ï)¢ᨵ᪷Ë/")(ߟ%—JTÕ)
8ᡈ(4-1,+8)Æᨵ/'(x)<0,ᡈX)ᙠ2-8,7k-1)ᡈQk1,+8)Æᓫº,Ë/(-A/T^T)<0,lim/(x)=+00,/(TT^T)>0,limf(x)=-oo,ᡠ/(x)ᙠXT-00XT+CO(-8,7k-1)¾x¿ÀQᙠ(Jk-l,+oo)¢¾x¿ᨵÀQ¢ᡠÙ,*41ᦇarctanx-x=0ᨵ᪷>1Ûarctanx-x=0ᨵ᪷18ஹூὃQᑖ᪆,S⚪ὃVÜḄÝÞZᦪᑡᦈáឋḄÝÞâãgᜧ(1)⌕ÝÞäÜxᐸæᓄè\ᦪÜᑭᵨᓫឋ&'ÝÞ}(2)ÝÞᦈáឋ⌕ᵨᑮᓫᨵéᦈáᳮêëìᵨ(1)Ḅí1Yூ)᪆,(1)µ2BxᑣîÜxᓄè‘0nx+1ᐜÝÞln(l+x)<>0,µ/(x)=x-ln(l+x)ï/(x)=JJ—>0,x>0ðy/(x)ᙠñ0,+8)¢ᓫ⌴ÒËᵫ /(0)=0,ò»¶x>0/(x)>/(0)=0oÁᓽ1ó1+ᑍ)<□ᜩ>0XÝÞ——0,x+111xµg(x)=ln(l+x)------÷g(x)=-------------7>ø>x®g(x)ᙠñ,+0°)¢x+11+x(1+X)-Xᓫ⌴Òᵫ g(0)=0,ò»¶xு0g(x)>g(O)=OÁᓽ——0«x+1Y-ò»ᡃÿ ——0oᵫᓽᑮᡠ◤ Ḅx+1(2)„-«„=—!——ln(ll),ᵫ)*In(l+1)+ln(l+-)+...+ln(l+-)-In7?=ln(n+1)-Inn>0on2n2n=>ᦪᑡ/?2@ᨵBḄᦑᵫᓫ4ᨵBᦈEFᳮ+,ᦪᑡ/“2ᦈE19ஹூJᫀ,a
9ூὃNᑖ᪆,Q⚪ὃSTUVᑖḄWXWXYZ⌕ᑭᵨᑖ^Vᑖ_`◤⌕WXḄVᑖᓄ?b+ḄVᑖc⚪de?f⚨ᨵ*FḄhikWm(X,y)dxdyoᓄ?pqVᑖூj᪆,`TUVᑖDrWJ"(x,y)dx(x,y)dxdyxyfxD✌ᐜὃ⇋(x,y)dx,wxy@@z{|y~ᦪḄᦑᨵ-(y)dx=yf'(l,y)-j/(x,y)dxyᵫfd,y)=/(x,1)=o᧕+f(Ly)=f(x,1)=oVᑖᣚVᑖq,*fd)J(x,y)dx=—jdxf(x,y)dyὃ⇋Vᑖ,wxy@z{|x~ᦪḄᦑᨵf(x,y)dy=-\f(x,y)d)1*1litJ(xy)dxdy=a(x,y)dxdy%'(x,y)dy=dxf(x,y)dy0J)(215ஹ20ஹூJᫀ,জa=5mঝ(A8)=(%«421021-10-2,ூὃNᑖ᪆,Q⚪ὃSᔣ|Ḅឋ⊤c◤⌕ᵨᑮឋḄ¡ᐵᭆ¤j⚪¥wxzឋ⊤c¦ឋḄj§ᔠ©ᩭ
10ூj᪆,জᵫ4,£23ᵫ216263⊤¯113+|²³=124=a—5=0,ja=513aঝQ⚪´µ¶▤¸▣º»,8&¾=»%¿«3¾(\o1Y7113ஹ+=»',%3ᔆ»⊈Â3¾=°1312415*135,WX=4210ஹT092,r2i5ஹ=>ḄÇᵨ¾=»%aaj421021-1-2,21ஹூJᫀ:»1¾ÊḄᱯÌÍᑖÎ?1-1,0,ÏḄᱯÌᔣ|ᑖÎ?001(2)A=000100ூὃNᑖ᪆,ÐѸ▣ḄᱯÌͦᱯÌᔣ|j⚪¥wxÏᵨÐѸ▣ḄᱯÒឋÓூj᪆,»1¾+,1,-1ᙳ?4ḄᱯÌÍ,ᑖÎ?ÕÖḄᱯÌᔣ|*A¾=2,+0²@ÊḄᱯÌÍ×0ḄᱯÌᔣ|¦ØÙ
11Úa=X?0ḄᱯÌᔣ|ᨵ““*Û3=°Ü2[—Xj+£=0ÊḄᱯÌÍᑖÎ?I,-I,0ÏḄᱯÌᔣ|ᑖÎ?0,0,1Jஹ1,(2)A=PAP'1o-21O-21022ஹூJᫀ,(1)X01-101/301/30101/3(2)Z-101P1/31/31/3(3)PXY=°ூὃNᑖ᪆,Q⚪ὃSTÝÞᦣàᑖáḄᑖáâ¡ᐵᦪãᱯÌḄWXᐸYᨬZ⌕Ḅ@æ*çὶᔠᑖáḄWX
12ூj᪆,(1)ᵫP(X2=y2)=l,=>P.2“2)=0ᦑp(x=o,y=1)=0,=>p(x=i,y=i)=Â(x=i,y=I)+P(X=o,y=i)=p(r=i)=i/3ᵫÂ(X=1,ë=0)=0+p(x=o,y=o)=p(x=i,y=O)+P(X=o,y=o)=p(y=o)=i/3í᪵ᵫp(x=o,y=-i)=o+p(x=o,y=—1)=Â(x=i,y=—1)+Â(x=o,y=-i)=p(y=-i)=i/3y᪵ᡃÖðᑏc(x,y)Ḅὶᔠᑖáó,*101001/3011/301/3(2)z=xyḄõÍᨵ*1,0,1ᐸYp(z=—I)=P(X=i,y=—i)=i/3,P(Z=I)=P(X=i,y=i)=i/3,ᑣᨵP(Z=0)=l/3=>z=xyḄᑖáâ?Z-101P1/31/31/3(3)EX=2/3,£/=(),EXY=0,cov(X,7)=EXY-EXEY=0cov(x,y)ᦑPxY4DX4DY23ஹூJᫀ,(1)/=ú(2)E(a2)=a2,D(a2)=-ûூὃNᑖ᪆,Q⚪ὃSýᦪþWÿ ᦪᱯḄᨵḄᙠ0ḄᨬA92ᜧᯠᨬ⌕Ḅ⌕-!"$ᙠḄᦪ%&'()*•ᑣ◤⌕.ᔠ0ᵨᦪᱯḄᔜ34ឋ6(789ᜧூ;᪆=(1)ᯠAᦪ
13'DXi/1LDX|,H2,…x“/N=nI—expl2b2J—7—exp/=1”2ᐔ"/=!/.,n14a->—{———=——In2TT——Ino----d---------2.2b222b2.2i=i/=iSlnL=__n_τ1;DXiN2h)i2^Flmn=0op^2Ḅᨬᜧᯠqr=s’,ᨬᜧᯠda2♦nDXj—°N2nj=lD2Nᵫ ᦪᱯḄ78opA_/V\21_"zEg2 =E£D{"=9EXi-<=2=EX>?¥=DXI=d|J}Da- =D)Xஹ=5BDXi 2=DDXi° 2_1=1Ji=lᵫX{oNDo,"N,ᵫᑖḄឋ6oND0,lN/7d/পᵫ72Ḅឋ6o4a=2,ODX{0N2=2D/,ᦑn
152012ᐰắẆᐭ%ὃᦪ%()⚪ஹ⌱¡⚪s¢1£8¤⚪¥¤⚪4ᑖᐳ32ᑖ§ᑡ¥⚪©ªḄ«"⌱⚗®ᨵ"⌱⚗¯ᔠ⚪°⌕±ᡠ⌱⚗³☢Ḅµ¶ᙠ·⚪¸ᢣº»n2প¼”½¾¿ÀḄᩩᦪ()(A)0(B)1(C)2(D)3(2)ÂAᦪy(x)=(e*-l)(e2x—2)…ᐸnÄᦪᑣy(0)=()(A)(-l)B-'(n-l)>(B)(-l)n(n-l)!(C)(—1ÅÆ(D)(-1)"«!(3)ÈAᦪ/(x,y)ᙠ(0,0)ᜐÊËÌͧᑡÎ⚪ÏḄ()(A)Ð▲limᙶ"Ôᙠ,ᑣ/(x,y)ᙠ(0,0)ᜐoÕ^>\x\+\y\(B)Ð▲lim”4Ôᙠᑣ/(x,y)ᙠ(0,0)ᜐoÕTyrᔆ+Jy(C)Ðᙠ(0,0)ᜐoÕᑣ▲limÛÜÔᙠx^\x\+\y\(D)Ðᙠ(0,0)ᜐoÕ,ᑣ▲limÝ?Ôᙠ+>(4)Â4=e{sinxdx(k=l,2,3)ᑣᨵ()(A)/,(B)1<1,(C)I
16‘100ஹ(6)ÂAÄ3▤ê▣PÄ3▤o⌮ê▣íXAP=010,Ðஹ02,P=(«,,«,,«),=(%+1223)ᑣ()3‘100ஹ‘100ஹ’200ஹ’200ஹ(A)020(B)010(C)010(D)020ஹoobஹ002,ஹ002)ஹo°b(7)Â XYäîïðíᑖñòóôᦪÄ1ôᦪÄ4Ḅᢣᦪᑖᑣp{x