北邮微波期中作业_单双支节匹配

北邮微波期中作业_单双支节匹配

ID:83386564

大小:2.80 MB

页数:32页

时间:2023-04-20

上传者:灯火阑珊2019
北邮微波期中作业_单双支节匹配_第1页
北邮微波期中作业_单双支节匹配_第2页
北邮微波期中作业_单双支节匹配_第3页
北邮微波期中作业_单双支节匹配_第4页
北邮微波期中作业_单双支节匹配_第5页
北邮微波期中作业_单双支节匹配_第6页
北邮微波期中作业_单双支节匹配_第7页
北邮微波期中作业_单双支节匹配_第8页
北邮微波期中作业_单双支节匹配_第9页
北邮微波期中作业_单双支节匹配_第10页
资源描述:

《北邮微波期中作业_单双支节匹配》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

᜛ᜧ▾:201221111620122104560515.06.10

1ஹḄ...............................................................ஹ⌕.................................................................ஹᳮ.................................................................1ஹᙊᑴ.............................................................2ஹᓫ⁚ὶᓛᳮ......................................................3ஹ!⁚ὶᓛᳮ......................................................"ஹ#$%&...............................................................'ஹ(ᵨ*+.................................................................,ஹ-.%&/.............................................................0ஹ1234.................................................................5ஹ6ὃᦻ9....................................................................:ஹ;ṹ..........................................................................

2᤺⌕>?@MATLAB#$ᑴSmithᙊABCᓫஹ!⁚ᓛ-.஺ᐵFGMATLABSmithᙊᓫ⁚ᓛ!⁚ᓛஹḄ:1ஹIJKLMᙊḄᳮNOᵨP2ஹQ4(ᵨKLMᙊᑖ᪆T⚪P3ஹ#$V&WSmithᙊXYᓄJ[\]^T⚪஺ஹ⌕1ஹ?@#$V&_`.KLMᙊabc•ᓄeᢙg;2,_`.ijᙊNcᓄeᢙgP3ஹWklmᦪAopmᦪqNrsḄXYᓄtuP4ஹW\]^]ᐭeᢙḄXYᓄtuP5ஹWὶᓫ⁚ᓛwxN⁚yzḄtuP6ஹWὶ!⁚ᓛwxḄtu஺ஹᳮZ]+ZQopmᦪḄ{|஺ᙠConvertZ2AbsL~ᦪᵨᑮLAV(&+Z)2+ᑍ20opmᦪḄqAᙠAbsL,PhᦪᵨI஺

3opmᦪklḄᐵm஺ZL+jZ°tan(m)4n=ZoZ+jZtan(/?/)0£]ᐭeᢙAᙠ!⁚ᓛAᵫylᑮyl'ᵨᑮAᵨᓛḄij஺d=e11-|r|.Kττmm1W\~PIImaxᵨtuᢥAklNK஺eᓫ⁚ᓛᵨJ᪆distanceNlengthḄᦪᵨᑮ஺Tarccos(p-A4ᐔ1᜛+1(]ᐭeᢙo_ᵨᑮ஺

47T1J2|᜛1j+—¡c¢/ஹ2rr———l,0l1+ᵪ\y23-i+"ixj\XJ£⌕ᵨᑴᙊḄᦪA¤¥¦⌕஺1ஹᙊᑴ§¨]ᐭeᢙgN\]^ḄᱯឋeᢙAᓽX2c--ᓄeᢙZ=^-=R+jX=r+jx,ᑣXaᑖ®¯~RᙊA~Xᙊb᪷±u¯ᩭḄ³2¯L~opᙊ஺~Rᙊ~XᙊḄ´&᝞¶·³“&>+1—r1—·r„-i2+·r-l¼2=·-¼2vR+lR+l2XX2ஹᓫ⁚ὶᓛᳮ:Z=^=R+jX=r+jxL½¾¿eᢙ⊤.z஺_AᑣÁ¾¿ÁÂdᜐḄ\]z,TZ0+JR+jXmAᐸM=tan"/,ÅÆḄij^]ᐭe

5cRX(1+m)2„*Xm-(Z“Xm)(X+Znt)oG=--------------------------D—P■~R-+(X+Z",Z-[R-+(X+Z„m)-]஺Õ2ᓛ¾¿A⌱OG=஺=—×d(‘஺AᑣmḄÚ´&Z0(R—Z0)஻J-2XZ/n+(/?Z-7?2-X2)=000ãmJ§¯X±^R[(Z-R)2+X2]/ZOtl(R*,)(RAz஻)åæAmḄçJ:—=——arctan(/?t)(m>0)A2ëd1/ஹஹr—=——\TC+arctan(m)]ஹᐭ$71(ìீ0)_/?2xm-·Z-Xò¼·X+ZmBoo¯ᓛ⁚ḄwxAᐜ⌕2ᑮḄm;ᐭZ\R2+X+Zm2]Oo¯B,ᯠõ⁚]ᐭöḄᵯj~-B஺L1,Bஹ-=----arctan·¼⁚øù^_ḄwxX2"Yo⁚úù^_Ḅwx2᝞ûü☢ç|¯Ḅwxþ¾g,ÿ◤2ᓽ஺ᓫ⁚ᓛ&*°ᱯឋᢙᓛ஺!"Ḅ$%&'⁚()*Ḅ+,-.Ḅ+,/01ᦋ345678ஹ:;<=>?@AB஺CD5EF⚪ḄHI&JᵨL⁚Mᘤ஺OP⌱ᵨRS⁚ᓛT&US⁚ᓛ,WḄ<=/X஺6Y:ᡈ:[4ᑴ]RS^_`᧕4b_?◤⌕ᙠeᱏᡭh;678jkl4JᵨmSn_ᔠ〉4b_RSq`᧕r1st4uRS⁚?v&wᵯᢙ஺

63ஹL⁚yὶᓛ{ᳮ:ᙠ~ᡃXM⁚ᙠᜐ4ᓽ4_o,7⌱⁚Ḅ4,_Iᙠ⁚4ᐭl⊤_'Yh=G+jB+Bi\=4ᓃ=G+.&l4,&⁚Ḅᐭᵯ4ᔣᵯ@ᔣᑮ⁚Ḅ4ᐭY=y6+/(8++ᓃ)£=—3°Y+jm(G+jB+jB)=,o2tm=tan(/Xi)"Zl⊤_2o஺⌕ᓛᡂ§4ᑣᙠ©%ḄLḄª«¬;P£4ᵫ¯l°@~'221+m1(Yn-Bm-B2mYG-G^o0,m2mOvᵫ±²Ḅ42j=³´X⁚y±7d+^2)GY-G-m2ooB?——B+Ḅᐭᵯ'm,ᯠ¶4xḄ·«;P⁚Ḅᵯ¸4A¹°⁚Ḅᵯ¸_B=±ᓃ»1+2G%—G2/”2+G%’Gm஺ᙠ¹°Ḅ¼j4½¾ᑖÀ6Á7ÂC஺ᑭᵨ8=%ᡈ8=ÄÅᑖÀ¹°Eᓛ⁚ḄÆÇj'^^arctanA2171X⁚_RSḄÆÇ_W⁚_USḄÆÇ_A2TU2Ë◤3ᓽ஺᝞É☢=¹°ḄÆÇ&¸,2yὶL⁚MᘤEÌ*ᑮḄ4•Î⌱ÏP1Ḅ¸4⁚Ḅ22223/1°

7DXÚÛᙊ+,Ḅ⁚/{ᑣÅ⌱Þ4!ËᨵÚÛᙊK=gl+àḄ;glᙊᨵá%4âªãᢙᓛ஺äª44j⁚ᑮḄ4´X¶4?&6å6ÁḄ;©ᙊÚÛᙊáḄ45>&L⁚ᓛḄ“èé”஺CD“èé”Ḅᨵᦔ@I&Jᵨì⁚ᓛᘤíஹîïð~ñMainòᦪ

8single_matchòᦪdouble_matchòᦪsinglefunòᦪdoublefunòᦪ

9ôஹᵨõöᙠḄ÷øùÉ4Inf⊤ýþ4NaN⊤ᙠᦪ஺main.exe,ᑣ☢ᐭ!Ḅᵯ$R&ᵯᢙX,)*+,Ḅᱯឋ$ᢙZo12345Ḅ67)+81:;ᑴᙊ>᪷@+ᐭḄ!&ᱯឋ$ᢙA;$ᢙᙊ>BCDEFGHᦪI2ஹLMHᦪ᜛ஹODEᨬQḄᵯRM⁚Lmin&ᵯRMῳLmaxBWCᓫ⁚YZᣚᘤᓛ^4Ḅ`aᙠ$ᢙᙊ>bAc⁐Ḅᙊᑖf⊤gRᙊஹgXᙊAh⁐5,Ḅᙊ⊤gFGᙊAi⁐jkl⊤!ᙠᙊ>bḄmn஺ᵫc⁐5,4pq!Ḅᵯrs8᝞uRஹXᡈZoḄ+ᐭw5ᦪAᑣx┯z{:஺82:ᓫ|⁚Wὶᓛ^᪷@+ᐭḄ!&ᱯឋ$ᢙA;~ᙊ>BCDEFGHᦪI2ஹLMHᦪ᜛ஹODEᨬQḄᵯRM⁚Lmin&ᵯRMῳ4naxBWCᓫ|⁚Wὶᓛ^Ḅ`a8ᒹ&|⁚Ḅᓛ^mn&s:஺ᙠ~ᙊ>bAc⁐Ḅᙊᑖf⊤gGᙊஹgBᙊAh⁐5,Ḅᙊ⊤gFGᙊAgGᙊgFGᙊḄᜐḄi⁐jkl⊤!ᙠᙊ>bḄmnAjklᐵgFGᙊḄi⁐jkl⊤!Ḅ$ᢙᙠᙊ>bḄmn஺☘⁐Ḅᙊ⊤g=lḄᓛ^ᙊ஺ᩩc⁐,ᓛ^ᙊḄᜐḄ⁐jklᓽwᓫ|⁚Ḅᓛ^஺8᝞uRஹXᡈZoḄ+ᐭw5ᦪAᑣx┯z{:஺83:|⁚Wὶᓛ^᪷@+ᐭḄ!&ᱯឋ$ᢙA;~ᙊ>BCDEFGHᦪI2ஹLMHᦪ᜛ஹODEᨬQḄᵯRM⁚Lmin&ᵯRMῳ4naxBWC|⁚Wὶᓛ^Ḅ`a8ᒹ|⁚Ḅᓛ^mn&s:஺ᙠ~ᙊ>bAc⁐Ḅᙊᑖf⊤gGᙊஹgBᙊAh⁐5,Ḅᙊ⊤gFGᙊAgGᙊgFGᙊḄᜐḄi⁐jkl⊤!ᙠᙊ>bḄmnAjklᐵgFGᙊḄi⁐jkl⊤!Ḅ$ᢙᙠᙊ>bḄmn஺☘⁐Ḅᙊᑖf⊤g=lḄᓛ^ᙊ&,ᓛ^ᙊ஺gGᙊᓛ^ᙊḄᜐḄc⁐jkl⊤|⁚Ḅᓛ^A88ᩩc⁐,ᑖf᪗ᐸᵯrs஺c⁐jkl¢£┐¥¦2,§ᑮḄ⁐jklᓽw2©|⁚Ḅᓛ^Aªᩩ⁐,ᑖf᪗«ᐸᵯrs஺¬gGᐗᙊ4ᓛ^ᙊ®ᨵ8£A°±²ᐭ«|⁚ᓛ^Ḅ“´µ”A23x·C{஺¸£ᙠᙊ>b¹º~Ḅ»>஺8᝞uRஹXᡈZ஺Ḅ+ᐭw5ᦪAᑣx┯z{:஺

10¼ஹ½¾2¿>☢᝞>ᡠAÁÂᡂ!$ᢙZL=(30+j45)Q,ᱯឋ$ᢙZo=100QḄᓫÄ⁚Wὶᓛ^ÅÆAÇA;ᑴÈÉÊᙊ>Aᙠ>Ëi⁐ḄᓽÅÌᓄ!$ᢙ஺©ÇAᓫᓫÄ⁚ᓛ^AÈÉÊᙊ>ḄÎÏ«ᓛ^OÐ!ḄOÐ&Wὶ,ᡈὅ,Ḅs஺ᐳᨵÓÔ஺ÏËḄÕÎÖᐸ5wËᦻØÙAÚÛÅÜÝᵯᾯbḄmatlab᱐Üwin7à⚪âãäA~åËᦻØÙÏᐰAÂ᦮Ḅ¿>ᑁḄᦻØé1w“ᙠdl=0.35471XᜐWêᐭsÅLs=0.092646XḄ|⁚AᡈL஺=0.34265XḄ|⁚45ᓛ^Aᡈᙠd2=0.0013178ÝᜐWêᐭsÅLs=0.40735XḄ|⁚AᡈLo=0.15735XḄ|⁚45ᓛ^”

11ëÇAᓫÄ⁚ᓛ^AᐸËdl+O,d2=x/80ìwᐳᨵÓÔAìwᨵÏbḄí⚪AÂ᦮ḄᦻØé1w“ᙠ!ᜐWᐭsÅ0.45616AḄ|⁚Aîᙠd=A/8ᜐWᐭsÅ0.42539ÝḄ|⁚ï45ᓛ^Aᡈᙠ!ᜐWᐭsÅ0.40828AḄ|⁚Aîᙠd=ᐭ/8ᜐWᐭsÅ0.25403AḄ|⁚ï45ᓛ^”

12ñஹò§óxô5õwᡃ÷ø⍗ᑮúḄAûsüᜧþ«ᡃḄÿᡠᙠḄᡂᡂ஺ᡃḄ"#$ᡠ%$&ᡠᨵ($)*ὁ,-.஺/0ᡃ1⌕34567⚣9:;matlab,<=᝞?⍗ᑮBC$D3஺EஹGὃᦻJKLMᢈOPẠRTUV℉ᵯYZ[\᱐^KMATLAB#_`abcᵨRᑢfg▰ijk⚨mnᦟp\᱐^ஹ

13qஹrᑖtṹ(ᓫxy⁚ᓛ|rᑖ)functionsmithfun(action)ifnargin

140.73,0.76,0.23,0.05],'fontname1,1L','fontsize1,12,*horizontalT,*left1,*string',{12011210582ᦻlj¤¥'})%ᡂ☟᝱ᦻH=uicontrol(H_fig,1style''text,,unit*,'normalized'position*[rrr0.73,0.63,0.20,0.05],'fontname','Lfontsize12,'horizontalleftstring',{1ZL=*});H=uicontrol(H_fig*style*,'text',*unit','normalized',1position,,[f0.73,0.55,0.20,0.05],'fontname','L''fontsize',12,*horizontal*,'left*,*string1,{,+j*})rH=uicontrol(H_fig,!style'*text',funit*,1normalized','position'[rr0.73,0.47,0.20,0.05],'fontname1,'L1'fontsize*,121horizontalT1left,,'string',{'Zo=,});rzr%ᡂ§"¨ᦻ(©ᐭR,X,ZoḄ«)H__R=uicontrol(H_fig,*style',‘edit','position',[0.82,0.63,0.10,0.05],'fontname'L');H_X=uicontrol(H_fig*style',‘edit’,,position',[0.82,055,0.10,0.0f5],ffontnameLτ;H_Zo=uicontrol(H_fig'style1,*edit*,'position\[0.82,0.47^0.10,0.z05]*fontname1,1L);zᡂ☟᝱ᦻ(ᙊ¯Ḅ°?)H_tl=uicontrol(H_fig,'style1,*text*,‘unit',*normalized',1position\[0.74,0.39,0.22,0.05]);H_t2=uicontrol(H_fig,'style1'text*,1unit1,'normalized11positionzzI[0.74,0.34,0.20,0.05]);H_t3=uicontrol(H_fig'style1,*text,,‘unit',1normalized*,'positionzI[0.74,0.29,0.20,0.05]);H_t4=uicontrol(H_fig,*style1,'text,funit1,1normalized*,rpositionrI[0.74,0.24,0.20,0.05]);H_t5=uicontrol(H_fig'style',1text,,1unit11normalized1,'positionzr,,[0.1,0.1,0,54,0.08]);H_t6=uicontrol(H_fig1style1'text',1unitT,'normalized'1positionzzr

15\[0.1,0.07,0.54,0.08]);±ᡂᢥ³H_circle=uicontrol(H_figz1style**pushbuttonT,*position[0.735,0.21,0.22<0.07],1fontsize'r,10,1string1,1´ᑴSmithᙊ¯,,1callback1,['smithfun(*Tplot__circle1');1])H_circle=uicontrol(H_fig,,style',*pushbutton'position*[0.735,0.140.220.07],'fontsize,rzf10,*string1,1ᓫy⁚ὶᓛ|z,,1callbackf['smithfun('*plot_single_fun'‘)']);zH_circle=uicontrol(H_fig,1style'pushbutton1position*[0.735,0.070.22,0.07]'fontsize1rrzz,10JstringJxy⁚ὶᓛ|1fcallback1,[lsmithfun(*1plot_double_fun1f);*])r3·¸¹º»▣ᵨ½¾¿ÀÁ=ᦪÃHdata=[H_R,H_X,H_Zo,H_tl,H_t2,H_t3,H_t4,H_t5,H_t6];set(H_fig,'userdata',Hdata);RÄ\ᙊ¯elseifstrcmp(action,'plot__circle*)Hdata=get(gcf,'userdataT);HR=Hdata(l);HX=Hdata(2);HZo=Hdata(3);Htl=Hdata(4);Ht2=Hdata(5);Ht3=Hdata(6);Ht4=Hdata(7);Ht5=Hdata(8);Ht6=Hdata(9);R=str2num(get(Hdata(1),1string*));X=str2num(get(Hdata(2),'string*));Zo=str2num(get(HdataবTstring1));%\┯ᜐᳮifisempty(R)|isempty(X)|isempty(Zo)set(Ht1,1string',1Êᦔ©ᐭ,);set(Ht2,*string***);zset(Ht3,*string'/**);set(Ht4,1string,1T);rset(Ht5*string'/**);zset(Ht6,1string',**);elseifR<0set(Htl,*string',Êᦔ©ᐭ);zset(Ht2*string*,**);zset(Ht3,1string111);A

16set(Ht41string*,11);Zset(Ht5*string'1,);zzset(Ht6,1string'1T);AelseifZo<=0set(Ht1,string,Êᦔ©ᐭ);set(Ht2,*string',**);set(Ht3*string'/**);zset(Ht4,1string',**);set(Ht5*string,,1*);zset(Ht6,*string'**);z%ᙊ¯°?else[Gamma2,Lmin,Lmax]=circle(R,X,Zo);endÍᓫy⁚ὶᓛ|elseifstrcmp(action,'plot_single_fun1)Hdata=get(gcf,*userdataf;HR=Hdata(1);HX=Hdata(2);HZo=Hdata(3);Htl=Hdata(4);Ht2=Hdata(5);Ht3=Hdata(6);Ht4=Hdata(7);Ht5=Hdata(8);Ht6=Hdata(9);R=str2num(get(Hdata(1),'string1));X=str2num(get(Hdataফ1string*));Zo=str2num(get(Hdata(3),1string1));%\┯ᜐᳮifisempty(R)|isempty(X)|isempty(Zo)set(Ht1,1string*,'illegalinput!1);set(Ht2,fstring*,**);set(Ht3,1string*,**);set(Ht4,*string*11);zset(Ht5,*string'1f);fset(Ht6,*string'/**);elseifR<0set(Htl1string',*illegalRESISTANCE!')zset(Ht2,1stringset(Ht3*string',1*);zset(Ht4,1string*,**);set(Ht5,*string*,**);set(Ht6,1string'1r);f

17elseifZo<=0set(Ht1,'string',illegalZo!1);set(Ht2,1string',')set(Ht3,,string1,set(Ht4,'string',set(Ht5z,string',set(Ht6,,string',ᙊ¯ᓛ|°?else[LolLo2Lsl,Ls2,dld2]=singlefun(R,X,Z஺)t1z[Gamma2,Lmin,Lmax]=circlefun(RX,Zo);zholdon;single_match(Gamma2,R,X,Z஺dl);holdoff;rho=(1+abs(Gamma2))/(1-abs(Gamma2));ifR==Zoset(Ht5*string1,strcat(Tᙠdl=',num2str(dl),‘ᐭfᜐÏᐭL஺=',num2str(Lol),'XḄÑÒy⁚§&ᓛ|,)*fontname1,*TimesNewRoman*,*fontsize,8);zzset(Ht*string1,strcat(*ᡈᙠd2=*,num2str(d2),1ÔᜐÏᐭLs=>num2str(Lsl)»ᐭḄÕÒ3Ö&ᓛ|z,1),Tfontname*,'TimesNewRoman1,*fontsize18);zelseset(Ht5*stringTstrcat(,ᙠdl=',num2str(dl),‘ᐭfzᜐÏᐭ×ØLs=Inum2str(Lsl),,ᐭḄÑÒyÙI'ᡈL஺=,,num2str(Lol),*ᐭḄÕÒyI,j§&ᓛ|1),1fontname*,1TimesNewRoman','fontsize',8);set(Ht6*stringfstrcat(*ᡈᙠd2=*num2str(d2),1fzr\ᜐÏᐭ×ØLs=Inum2str(Ls2),'XḄÑÒyÙIᡈL஺=Inum2str(Lo2),*ᐭḄÕÒy⁚§&ᓛ|'),'fontnamef,*TimesNewRoman','fontsize',8);endend%xy⁚ὶᓛ|elseifstrcmp(action,'plot_double_fun1)Hdata=get(gcf,'userdataT);HR=Hdata(1);HX=Hdata(2);HZo=Hdata(3);Htl=Hdata(4);Ht2=Hdata(5);Ht3=Hdata(6);Ht4=Hdata(7);Ht5=Hdata(8);

18Ht6=Hdata(9);R=str2num(get(Hdataপ*string'));X=str2num(get(Hdata(2)1string1));zZo=str2num(get(Hdataব*string*));%\┯ᜐᳮifisempty(R)|isempty(X)|isempty(Zo)set(Htl,string',illegalinput!1);zset(Ht2,1string',T).set(Ht3z,string',').set(Ht4,,string',!).set(Ht5,,string',').set(Ht6,,string’,!).elseifR<0set(Ht1,,string'illegalRESISTANCErset(Ht2,'string1,T).set(Ht3,1string'f).rset(Ht4,'string',f).set(Ht5,1string1,').set(Ht6,,string,,').elseifZo<=0set(Ht1,1string1,illegalZo!*);set(Ht2,1string,,r).set(Ht3,,string’,f).set(Ht4,1string'').rset(Ht5,,string',').set(Ht6,1string',%ᙊ¯ᓛ|°?else[Lsll,Lsl2,Ls21Ls22]=doublefun(R,X,Zo);z[Gamma2,Lmin,Lmax]=circlefun(R,X,Zo);holdon;ifimag(Lsll)==0&imag(Lsl2)==0&imag(Ls21)==0&imag(Ls22)==0double_matchl(Gamma2R,X,Zo,Ls21,Ls22);zelsedouble_match2(Gamma2,R,X,Zo);endholdoff;rho=(l+abs(Gamma2))/(1-abs(Gamma2));set(Ht1,1string',strcat('Ü2=Tnum2str(Gamma2)),'fontname',1TimesNewRoman*,'fontsize',8);rset(Ht2,1string',strcat('P=’,num2str(rho)),*fontname','TimesNewRoman',1fontsize',8,'horizontal11left*);r

19set(Ht3,*string',strcat(*Lmin=',num2str(Lmin),X')1fontname*,*TimesNewRoman**fontsize,8);ztzset(Ht4,*string',strcat(*Lmax='num2str(Lmax),1Ôr'),ffontname*,*TimesNewRoman**fontsize,8);rzifimag(Lsll)==0&imag(Lsl2)==0&imag(Ls21)==0&imag(Ls22)==0set(Ht5,*string1,strcat(,ᙠÝÞᜐᐭ×Ø'num2str(Lsll)4,5ḄÑÒy⁚ßᙠd=ᐭ/8ᜐᐭáØ1,num2str(Ls21),,rÔḄÑÒy⁚â§&ᓛ|»),1fontname\»TimesNewRoman','fontsize',8);set(Ht6,*string1,strcat(,ᡈᙠÝÞᜐᐭ×Ø1,num2str(Lsl2),*A.ḄÑÒy⁚,ßᙠd=ᐭ/8ᜐᐭáØ',num2str(Ls22),1ZḄÑÒy|Jâ§&ᓛ|T)1fontname1,TTimesNewzRoman','fontsize',8);elseset(Ht5*stringf,strcat(1WARNING!nGᙊbᐭ/8ãfäʾå)'fontname1,1TimesNewRoman',1fontsizeT10);zset(Ht6,stringIstrcat(,xy⁚ᓛ|\&ᾝçè'),'fontname',*TimesNewRoman',1fontsize110);zendendend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Äᢙᙊ¯Ḅéᦪfunction[Gamma2,Lmin,Lmax]=circle(R,X,Zo),êëᓄᢙr=R/Zo;x=X/Zo;±Ä\ᓫíᙊ;᪗\ᵯïØt=0:0.0001:2*pi;plot(cos(t),sin(t)1—k1);rtext(-1.2,0,'01fontname1,'arial1,*color*'b11fonta*zzz,italic*);text(ë01,103,'0125',1fontname*,1arial1,*color1*bf,*fonta,,z1italic');text(1.030*0.25'*fontname!'arial1colorIb,'fonta1,zfz1italic');text(-0.1,ë118,10.375**fontname1,'arial*,'color',*fonta,,z1italic');holdon;plot([-1,1],[0,0],

20holdon;plot([00][-ll]z'k>zzzholdon;axis(*equal',[-1,1,-1,1]);%Ä

21Rᙊifr==infplot(1,01rp•);zaxis(*equal[-1,1,-1,1]);elsea=r/(1+r);rl=l/(1+r);plot((rl*cos(t)+a),(rl*sin(t))');Aaxis(*equalI[-1,1,-1,1]);holdon;end;Ä

22Xᙊifx==infplot(1,0,");axisÜequall[-1,1,-1,1]);elseifx==0plot([-ll],[0,0],,r1);zaxis(*equal[-1,1,-1,1]);elseb=l/x;r2=l/x;plot((r2*cos(t)+1)(r2*sin(t)+b),'b1)zaxis(1equaly,[-1,1,-l1]);zholdon;end;%Ä

23ð7ᙊz=r+j*x;Gamma2=(z-1)/(z+1);Mod=abs(Gamma2);Phi=angle(Gamma2);plot(Mod*cos(t),Mod*sin(t)1k');rholdon;axis(*equal[-1,1,-1,1]);holdon;ñòóôõ᝱plot(Mod*cos(Phi),Mod*sin(Phi),,gpT);holdon;Re=[0,cos(Phi)];Im=[0,sin(Phi)];polyfit(Re,Im,1);

24plot(Re,Im,1b1);holdon;ifX<0if(Phi>=0)Lmin=Phi/(4*pi);Lmax=0.25+Lmin;elseLmin=(pi+Phi)/(4*pi);Lmax=0.25+Lmin;endelseif(Phi>=0)Lmax=Phi/(4*pi);Lmin=0.25+Lmax;elseLmax=(pi+Phi)/(4*pi);Lmin=0.25+Lmax;endholdoff;endtitle(•SMITHffl.tnlEHH1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%⁽Ä÷øᙊ¯Ḅéᦪfunction[Gamma2,Lmin,Lmax]=circlefun(R,XZo)z%êëᓄᢙ;ñòóôõ᝱r=R/Zo;x=X/Zo;z=r+i*x;y=l/z;g=real(y);b=imag(y);Gamma2=(z-1)/(z+1);Mod=abs(Gamma2);Phi=angle(Gamma2);Lambda=(pi-Phi)/(4*pi);Alpha=(y-1)/(y+1);plot(real(Alpha),imag(Alpha),,gp1);holdon;plot(real(Gamma2),imag(Gamma2),1gp1);holdon;aa=[real(Alpha),real(Gamma2)];

25bb=[imag(Alpha),imag(Gamma2)];polyfit(aa,bb,1);plot(aa,bb,1g*);holdon;ifX<0if(Phi>=0)Lmin=Phi/(4*pi);Lmax=0.25+Lmin;elseLmin=(pi+Phi)/(4*pi);Lmax=0.25+Lmin;endelseif(Phi>=0)Lmax=Phi/(4*pi);Lmin=0.25+Lmax;elseLmax=(pi+Phi)/(4*pi);Lmin=0.25+Lmax;endend%Ä\ᓫíᙊ;᪗\ᵯïØt=0:0.0001:2*pi;plot(cos(t),sin(t),'-k');text1fontname1,1arial1,*colorf'b**fonta,,zz1italic1);text(-0.11.03,10.125',1fontname*,'arialcolorb',1fonta,,z1italic');text(1.03,0,0.25I*fontnamef'arial'Jcolor'JbI*fonta1,1italic');text(-0.1,ë118,'0375',*fontname*,'arialcolor'b',1fonta','italic');holdon;plot([-1,1],[0,0],,2)holdon;plot([0,0],[-1,1],holdon;axis(1equal[-1,1,-1,1]);,Ä

26Gᙊifg==infplot(l0,1rp1);zaxis(1equal1[-1,1,-1,1]);relsea=g/(1+g);

27gl=l/(l+g);plot((gl*cos(t)+a),(gl*sin(t)),*b');axis(1equal1<[-1,1,-1,1]);holdon;end;3Ä

28Bᙊifb==infplot(1,0,1rp1);axis(*equal[-1,1,-1,1]);elseifb==0plot([-1,1],[0,0],'r');axis(*equal[-1,1,-1,1]);elsebl=l/b;r2=l/b;plot((r2*cos(t)+1),(r2*sin(t)+bl),*b*);axis(*equal1[-1,1,-1,1]);fholdon;end;ùÄ

29ð7ᙊ;ᓛ|ᙊy=g+j*b;gamma=(y-1)/(y+1);Mod=abs(gamma);Phi=angle(gamma);plot(Mod*cos(t),Mod*sin(t),",);holdon;axis(1equalI[-ll-1,1]);zfplot(0.5*(cos(t)+1)<(0.5*sin(t)),rc*);holdoff;—*SMZTH÷øᙊ¯>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ᓫy⁚ὶᓛ|éᦪfunction[Lol,Lo2LslLs2dld2]=singlefun(R,X,Zo)rzzzḕaüὶy⁚Ḅíý;ÑÒþÕÒy⁚Ḅ×Ør=R/Zo;x=X/Zo;ifR==Zom=-x/2;B=(RA2*m-(Zo-X*m)*(Zo+X*m))/(Zo*(RÔ2+(Zo+X*m>A2));ifm>=0dl=atan(m)/(2*pi);

30ifdl>=0.5dl=dl-0.5;elseifdl<0dl=dl+0.5;elsedl=dl;endd2=atan(m)/(2*pi);ifd2>=0.5d2=d2-0.5;elseifd2<0d2=d2+0.5;elsed2=d2;endLol=(-atan(B*Zo))/(2*pi);ifLol>=0Lol=Lol;Lo2=Lol;elseLol=0.5+Lol;Lo2=Lol;endLsl=(atan(1/(B*Zo)))/(2*pi);ifLsl>=0Lsl=LslLs2=Lsl;elseLsl=O.5+Lsl;Ls2=Lsl;endelsedl=(atan(m)+pi)/(2*pi);ifdl>=0.5dl=dl-0.5;elseifdl<0dl=dl+0.5;elsedl=dl;endd2=(atan(m)+pi)/(2*pi);ifd2>=0.5d2=d2-0.5;elseifd2<0

31d2=d2+0.5;elsed2=d2;endLol=(-atan(B*Zo))/(2*pi);ifLol>=0Lol=Lol;Lo2=Lol;elseLol=0.5+Lol;Lo2=Lol;endLsl=(atan(1/(B*Zo)))/(2*pi);ifLsl>=0Lsl=Lsl;Ls2=Lsl;elseLsl=O,5+Lsl;Ls2=Lsl;endendelseml=(X+sqrt(R*((Zo-R)22+X22)/Zo))/(R-Zo);m2=(X-sqrt(R*((Zo-R)22+X22)/Zo))/(R-Zo);Bl=(RA2*ml-(Zo-X*ml)*(X+Zo*ml))/(Zo*(R22+(X+Zo*ml)A2));B2=(RA2*m2-(Zo-X*m2)*(X+Zo*m2))/(Zo*(R32+(X+Zo*m2)A2));Lol=(-atan(Bl*Zo))/(2*pi);ifLol>=0Lol=Lol;elseLol=0.5+Lol;endLo2=(-atan(B2*Zo))/(2*pi);ifLo2>=0Lo2=Lo2;elseLo2=0.5+Lo2;endLsl=(atan(1/(Bl*Zo)))/(2*pi);ifLsl>=0Lsl=Lsl;elseLs1=0.5+Lsl;end

32Ls2=(atan(1/(B2*Zo)))/(2*pi);ifLs2>=0Ls2=Ls2;elseLs2=0.5+Ls2;endifml>=0dl=atan(ml)/(2*pi);ifdl>=0.5dl=dl-0.5;elseifdl<0dl=dl+0.5;elsedl=dl;endd2=(atan(m2)+pi)/(2*pi);ifd2>=0.5d2=d2-0.5;elseifd2<0d2=d2+0.5;elsed2=d2;endelsedl=(atan(ml)+pi)/(2*pi);ifdl>=0.5dl=dl-0.5;elseifdl<0dl=dl+0.5;elsedl=dl;endd2=atan(m2)/(2*pi);ifd2>=0.5d2=d2-0.5;elseifd2cod2=d2+0.5;elsed2=d2;endendendholdoff;

33%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ÿ⁚ὶᓛᦪ(•⁚ᙠᜐ)function[LsllLsl2Ls21Ls22]=doublefun(R,X,Z஺)zrzZ=R+i*X;Y=l/Z;Yo=l/Zo;G=real(Y);B=imag(Y);m=l;⁚ᐭ/8ml=(l+mA2)*G*Yo-GA2*mA2;m2=abs(l+mA2)*G*Yo-GA2*mA2;Bll=-B+(Yo+sqrt(ml))/m;B21=(Yo*sqrt(m2)+G*Yo)/(G*m);B12=-B+(Yo-sqrt(ml))/m;B22=(-Yo*sqrt(m2)+G*Yo)/(G*m);Ls=-(atan(Yo/Bll))/(2*pi);ifLs>=0Ls11=Ls;elseLsll=0.5+Ls;endLs=-(atan(Yo/B21))/(2*pi);ifLs>=0Ls21=Ls;elseLs21=0.5+Ls;endLs=-(atan(Yo/B12))/(2*pi);ifLs>=0Lsl2=Ls;elseLsl2=0,5+Ls;endLs=-(atan(Yo/B22))/(2*pi);ifLs>=0Ls22=Ls;elseLs22=0.5+Ls;endholdoff;

34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ᓫ⁚ὶᙊfunction[]=single_match(Gamma2,R,X,Z஺dl)-ᓄ!"#ᦪr=R/Zo;x=X/Zo;z=r+i*x;y=l/z;Alpha=atan2(imag(Gamma2),real(Gamma2));alphal=(y-1)/(y+l);ḕ"%ᓛ&'(ifR==Zoplot(real(Gamma2),imag(Gamma2),‘rp');plot(real(Gamma2),-imag(Gamma2),1rp1);m=[0,real(Gamnia2)];Rel=[0,cos(Alpha)];Iml=[0sin(Alpha)];1Im2=[0-sin(Alpha)];rplot(Rei,Iml*b*);rplot(Rei,)m2,1b*);holdoff;elseanglel=abs(atan2(imag(Gamma2),real(Gamma2)));angle2=2*pi*(dl/0.5)-anglel;ifX>=0ifangle2<0angle2=2*pi+angle2;plot(-abs(Gamma2)*cos(angle2),abs(Gamma2)*sin(angle2),*rp*);plot(-abs(Gamma2)*cos(angle2),-abs(Gamma2)*sin(angle2),*rp*);Re3=[0,cos(angle2)];Re4=[0,cos(angle2)];Im3=[0sin(angle2)];zIm4=[0,-sin(angle2)];plot(-R೐3,)m3,)*plot(-Re4,Im4,;holdoff;elseangle2=angle2;plot(-abs(Gamma2)*cos(angle2),abs(Gamma2)*sin(angle2),'rp');

35plot(-abs(Gamma2)*cos(angle2),-abs(Gamma2)*sin(angle2),,rp1);Re3=[0,cos(angle2)];Re4=[0,cos(angle2)];Im3=[0,sin(angle2)];Im4=[0,-sin(angle2)];plot(-Re3,m3,);plot(-Re4,m4,1);holdoff;endelseanglel=abs(atan2(imag(Gamma2),real(Gamma2)));angle2=2*pi*(dl/0.5)+anglel-2*pi;ifangle2<0angle2=2*pi+angle2;plot(-abs(Gamma2)*cos(angle2),abs(Gamma2)*sin(angle2)1rp1);rplot(-abs(Gamma2)*cos(angle2)-abs(Gamma2)*sin(angle2),,rp1);rRe3=[0,cos(angle2)];Re4=[0,cos(angle2)];Im3=[0,sin(angle2)];Im4=[0-sin(angle2)];rplot(-Re3,m3,Tb1);plot(-R೐4,m4Jb);holdoff;elseangle2=angle2;plot(-abs(Gamma2)*cos(angle2),abs(Gamma2)*sin(angle2),1rp1);plot(-abs(Gamma2)*cos(angle2)-abs(Gamma2)*sin(angle2),,rp1);rRe3=[0,cos(angle2)];Re4=[0,cos(angle2)];Im3=[0,sin(angle2)];Im4=[0,-sin(angle2)];plot(-Re3,Im3*b*);zplot(-Re4,Im4Tb1);rholdoff;endendend

36%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%⁚ὶᙊ1(,-.)function[]=double_matchl(Gamma2,R,X,Z஺(Ls21,Ls22)t=0:0.0001:2*pi;plot(0.5*(cos(t)),(0.5*sin(t)+0.5),'c');holdon;r=R/Zo;x=X/Zo;z=r+i*x;y=l/z;g=real(y);b=imag(y);◤"%0◤1⁚Ḅᓛ&'(xl=-tan(2*pi*Ls21);x2=-tan(2*pi*Ls22);yl=l+i*(1/xl);y2=l+i*(l/x2);gamma1=(yl-1)/(yl+1);gamma2=(y2-l)/(y2+l);aal=real(gammal);bbl=-imag(gammal);aa2=real(gamma2);bb2=-imag(gamma2);plot(aalbbl*rp*);zzplot(aa2,bb2,1rp1);alphal=atan2(bblaal);ralpha2=atan2(bb2,aa2);Rel=[0,cos(alphal)];Re2=[0,cos(alpha2)];Iml=[0,sin(alphal)];Im2=[0sin(alpha2)];rplot(Rei,ml,'r');plot(Re2,m2,1r1);%"%03⁚Ḅᓛ&'(plot(abs(gammal)*cos(alphal+pi/2),abs(gammal)*sin(alphal+pi/2),*bP')*plot(abs(gamma2)*cos(alpha2+pi/2),abs(gamma2)*sin(alpha2+pi/2),1bP1)*Re3=[0,cos(alphal+pi/2)];Re4=[0,cos(alpha2+pi/2)];Im3=[0sin(alphal+pi/2)];fIm4=[0,sin(alpha2+pi/2)];plot(Re3,m3,1b1);

37plot(Re4,Im4*b*);zholdoff;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%⁚ὶᙊ(ᨵ-.)function[]=double_match2(Gamma2,R,X,Zo)t=0:0.0001:2*pi;plot(0.5*(cos(t)),(0.5*sin(t)+0.5),'c');holdon;[Gamma2,Lmin,Lmax]=circlefun(RXZo);zzaxis(1equal[-1,1,-1,1]);holdoff;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭