2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)

2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)

ID:83348983

大小:2.16 MB

页数:20页

时间:2023-04-15

上传者:灯火阑珊2019
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第1页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第2页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第3页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第4页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第5页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第6页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第7页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第8页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第9页
2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)_第10页
资源描述:

《2021-2022学年浙江省宁波市鄞州区九年级(上)强基考数学试卷(附答案详解)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

ਭᵨ2021-2022ḕ᫑±ὃᦪᔁὃXXXὃ100ᑖ$%⚪'XXX⚗1.*ᔁ+,ὃ-./012Ḅ45ஹ7ὃ89:ᑏᙠ*⚪ᓱ>஺2.A*⌱C⚪,⌱DEF⚪*ᫀH,ᵨJKL*⚪ᓱMN⚪OḄ*ᫀ᪗9QR᝞◤ᦋV,ᵨWXYZ[H,\⌱Qᐸ^*ᫀ᪗9஺A*_⌱C⚪,0*ᫀᑏᙠ*⚪ᓱ>,ᑏᙠᔁ>`ᦔ஺3.ὃcdH,eᔁf*⚪ᓱghiA஺Iᔁ⌱⚪gஹ⌱C⚪eᜧ⚪ᐳ8F⚪,ᐳ48.0ᑖ஺ᙠEF⚪ᑡDḄ⌱⚗,⌱Dnᔠ⚪OḄg⚗1.p1ஹ2ஹ3ஹ4rsᦪtu⌱vwsxyḄᦪ,ᑖz{|a,c,ᑣᦪy=ax2+4x+cxᨵwsxyiḄᭆ᳛|A-;Di2.ᙠᱥy=/>vg4_ᙶ᪗஺,஺4,ᙠ04>vB,OB=10A,ᑣ⚔ᙠBḄᱥḄ⊤|A.y=^x2B.y=9x2C.y=^x2D.y=3x23.£M=3/-8xy+9y2—4%+6y+14x,y«¬ᦪ,ᑣMḄg®«A.0B.¯ᦪC.±ᦪD.᦮ᦪ4.᝞³,AABC,OஹE«BCµ>Ḅ,BDDEEC=321,Mᙠ4cµ>,CMMA=12,BMAD,AE¶H,G,ᑣBHHGGM¹¶A.321B.531C.25125D.512410

15.gs±»¼Ḅ⊤☢Q¾¿À⁐,ᢥ᝞³ᡠÄ0Åᑗᡂ27sᜧFɹḄFÊ»ᙽ,ÌᐸÍᨵis☢஺=123QᨵÀ⁐ḄFÊ»ᙽḄsᦪ|□,ᑣ%1,%2,ÐḄᐵÒ|A.—+%3=1B.+%2—=1C.+Ó2g%3=2D.—%2+%3=26.pg4,-3,1,3,4ÔÕsᦪ,tuÖvgsᦪ,{|m,£mØᐵ¶x,yḄᐗg»ÚÛ2ᨵÜ,ᐵ¶ÝḄᑖ»Ú-—I=ᨵ±ᦪmx—2y=—3x-ii-xÜ,ßàÔÕsᦪᡠᨵ¾áᩩãḄMḄÐf«A.1B.2C.-1D.-27.Ìᐵ¶xḄ»Úa/+a+2x+9a=0ᨵwsxɹḄ¬ᦪ᪷ஹ>,<1-8.ᙠᙊᑁrµé4BCD,/-BAD,ê1DCḄëìᑖi¶E,EíîMNìð¶BC,4BஹCDi¶MஹN,ᑣñᨵMN=A.BM+DNB.AM+CNC.BM+CND.AM+DNnᔁ⌱⚪ஹ:ò⚪eᜧ⚪ᐳ6F⚪,ᐳ36.0ᑖ9.óôAl,3.B5,-2,ᙠ%>ögP,|AP-BP|ᨬᜧ,ᑣ¾áᩩãḄPḄᙶ᪗«.10.᝞³,ᙠì☢îëᙶ᪗Ò,±»é4B0Cf±»éOOFEḄ⚔B,Fᙠx>,⚔C,஺ᙠy>,S=3,ûüýᦪy=>0Ḅ³þÿE,hADFᑣk—.11.ᦪy=|2%-3|,ᑣy=mᡂḄxាᨵ!"ᑣmḄ#$2⚓"ᐳ20⚓

212.᝞(")4DஹBEஹC+#,ABCḄᩩ."/AB=6,BC=5,EF=3,ᑣ01BEḄ2#13.᝞("ᙠ4☢67ᙶ᪗:;"4(4,0),B(2,0),C(0,4),D#01BC<="DELAC^E,DF14B>?@AEF,ᑣ01EFḄ2ḄᨬC#.14.DEF4BCDᑁHᨵ1000!"/I⚔A,B,C,஺LM1000!NOPDEFᑖᒘᡂn!SᨵTUḄC7F"ᑣ!ᦪnḄ#.ஹVW⚪(Zᜧ⚪ᐳ4C⚪"ᐳ54.0ᑖ஺VW\ᑏ^ᦻ`ab"cbdᡈfghi)15.(ZC⚪14.0ᑖ)k!lmnᦪo,y,zpqᐵ:sx+3y+2z=3t3x+3y+z=4u"M=3x-2y+4zḄᨬCLᨬᜧᑖvwxyz16.(ZC⚪16.0ᑖ)ᙠ4☢67ᙶ᪗:xOy;"Awx{᜜Ḅ"/4☢ᑁḄBpq}014BḄ2~t4ᑮx{Ḅ"ᑣBw4Ḅ“”.(1)/4Ḅᙶ᪗#(0,2),A(2,2),P(l,-4),஺3(-⍎"1);"4Ḅ“”2w(2)/M(l,2)LN(l,8)w4Ḅ!“”"4Ḅᙶ᪗(3)ᦪy=4%(x>0)Ḅ(#3OTḄ#2,ᙊ?ᙶ᪗#7(0,t)./ᙠL<ᙠM,஺<ᙠN,pqNwMḄ“”"6Aᑏ^tḄ.17.(ZC⚪16.0ᑖ)᝞("ᙠ4☢67ᙶ᪗:;"60y=}x+2tx{>4,ty{>C,ᱥ0y=-1/+bx+c4,C"tx{Ḅ!#8.

3(1)ᱥ0Ḅᦪ⊤s.(2)D#604c<ᱥ0<="@ABC,CD,)60BD014C>E,,CDEḄ☢¢#Si"ABCEḄ☢¢#S2"Ḅᨬᜧ.18.(ZC⚪8.0ᑖ)ᨵ¨©Eª«7¬⊡ḄDEF®¯©E¬⊡DEF.(1)᝞(1,ᙠ©E¬⊡DEF°BCD;"AD=CD,H.AD//BC,BC=2AD,NBḄ~ᦪ(2)᝞(2,DEFABCDᑁA>@A஺஺4c>E(²t஺Tᔠ)"/Ew4CḄ;"c}DEF4BCDw©E¬⊡DEF(3)ᙠ(2)Ḅᩩ´µ"¶2஺஺BC>F,஺஺>G,/¹=AB"^ABC=y,tanAC=12,FGḄ2(4)᝞(3,DEF4BCDᑁA>00,AB^BC,BD#O0Ḅ6"@AA0»¶2BC>E,஺஺>F,@AFC,)tan/B4F=x,=y,ytÀÁÂḄᦪᐵ:s.$4⚓"ᐳ20⚓

4WᫀLV᪆1.ூWᫀ௃BூV᪆௃V}Ç᪛É(Ê:ᵫ᪛F(Í}ᐳᨵ12ÎÍNḄÏÐ"ᐸ;ᑨvs,=16-4ac>0,ᓽac<4Ḅᨵ4ÎÏÐ"××Øᦪy=ax2+4x+ctᐸ{ᨵ!²ÚḄᭆ᳛#Ý=ᦑ⌱}B.✌ᐜÇ^᪛É(ᓽÍÊᡠᨵÍNḄÏÐtac<4Ḅãä"ᯠæᑭᵨᭆ᳛ésVᓽÍÊWᫀ.Z⚪ὃëḄwᵨᑡ⊤íᡈÇ᪛É(íᭆ᳛.ᑡ⊤íᡈÇ᪛É(íÍI²Tî²⍡ðḄᑡ^ᡠᨵÍNḄÏÐ"ᑡ⊤í〉ᔠ>hòᡂḄó´"᪛É(í〉ᔠhᡈhI<òᡂḄó´.ᵨᑮḄô#}ᭆ᳛=ᡠãäᦪtõãäᦪÁö.2.ூWᫀ௃DூV᪆௃V}4÷°DJLx{>D,B÷BClx{>C,᝞(:)û2),AD1x{"BC1x{,•••BC//AD,•••Z.OCB—Z-ODA,/-OBC=Z.OAD,

5OBC~AOADf.OB_oc_BC**OX-OD-ü1VOB=-OA,3OC=-OD,BC=-AD,33•••+x--m,yy=-m2,33•m=3x,22Ay=1x(3x)=3x,ᓽ⚔ᙠPªBḄᱥ0Ḅ⊤s#y=3x2,ᦑ⌱}D.4÷{>஺"B÷{>C,)4(þ62),cbᵫ0B=-0A,ÍÊ8(1771,277i2),=2,y=-m2,ᓽஹ=3.33333⚪ὃᦪ᪆!⚪Ḅᐵ$%&'(OBCSAOAD,ᵨ0mḄ1ᦪ!⊤3BḄᙶ᪗.3.ூ7ᫀ௃Cூ᪆௃:M=3%2-8xy+9y2—4x+6y4-14=(%2—4x+4)+(y2+6y+9)+2(x2-4xy+4y2)+1=(%-2)2+(y+3)2+2(x-2y)2+1>0.ᦑ⌱:C.⚪IMJK〉MNOIMḄ⊤P!QᣚSTUVᐰXY!ḄZᯠ\᪷^_`ᦪḄឋbᩭdMḄefh.⚪i⌕ὃklYmḄnᵨ_`ᦪḄឋbIMḄ⊤P!᪷^VᐰXYo!ḄᱯqJKNO%7⚪Ḅᐵ$.4.ூ7ᫀ௃Dூ᪆௃:rsEM,CECD=CMCA=1:3EMXKuvDw6⚓ᐳ20⚓

6•(BHDz(BME,.CEM^LCDAAHDME=BDBE=3:5,MEAD=CMAC=1:3-AH=3{|}ME,AHME=12:5HGGM=AHEM=12:5~GM=5k,GH=12k,vBHHM=3:2=BH17k•BH=—K2fBHHGGM=—k12k5k=51:24:102ᦑ⌱:D.rsEM,᪷^(CEM^-ACDX,᪷^ᑮ7ᫀ.⚪i⌕ὃOḄឋbḄᳮᵨ.5.ூ7ᫀ௃Dூ᪆௃:᪷^ᑖ᪆S1+—=6+8-12=2.ᦑ⌱:D.᪷^3:ᙠYḄ8U⚔qᜐḄ8UYᨵ3U☢ᨵ⁐2U☢ᨵ⁐ḄYᨵ12U1U☢ᨵ⁐ḄYᨵ6U.⚪i⌕ὃk¡OḄឋb᪷^dᨵ⁐¢Ḅ¡YḄUᦪ%⚪ᐵ$.6.ூ7ᫀ௃Dூ᪆௃:Y£¤{☄§6MY£¤ᨵ¨-4,ᑖ!Y£:{1={-,X=4-771,X—11—XM=1,ᓽm=3¨ᑖ!Y£ª,*•771H3,ᵫ⚪¬m=—3,1,

7®ᩩ°ḄmḄf±Z=-3+1=-2,ᦑ⌱:D.ᑖ²dᐗ{Y£¤ஹᑖ!Y£᪷^⚪¬ᑮ®ᩩ°ḄḄf´µᓽ.⚪ὃḄ%ᑖ!Y£Ḅmஹᐗ{Y£¤Ḅm¶dᑖ!Y£ஹᐗ{Y£¤%⚪Ḅᐵ$.7.ூ7ᫀ௃Dூ᪆௃ூᑖ᪆௃⚪i⌕ὃk{ᐗY£᪷Ḅ·¸¹ᑨ²!(Ḅᐵ»:(1)(>00Y£ᨵ¼U½Ḅ¾ᦪ᪷(2)4=0=Y£ᨵ¼U½Ḅ¾ᦪ᪷(3)A<0=Y£¿ᨵ¾ᦪ᪷.᪷¹»ᦪḄᐵ»S:X:+%=2᪷^{ᐗY£Ḅ᪷Ḅᑨ²!À¡ᐵuaḄ½!daḄefh.ÁÂᙠ¹<1<%2,ᓽ<1—1)<2—ீ<0,xlx2—(X1+%2)+1<ᑭᵨ᪷¹»ᦪḄᐵ»ᨬ\¶ÇaḄefh.ூ7௃:•••Y£ᨵ¼U½Ḅ¾ᦪ᪷ᑣa*0Ê4>0,ᵫ(a+2)2-4aX9a=-35a2+4a+4>0,{Ë2***-1<0,%2—1>0,ÌÍ(%1—1)(%2—1)<0,%i%2—(%1+%2)+1<0,ᓽ9+^+1<0,a{VVa<0,ᨬ\QḄefhS:-V

88.ூ7ᫀ௃Dூ᪆௃:᝞ᙠNMÏeN/=NO,rs஺ᐭAF•NFD=NDF,•A,B,C,஺Òqᐳᙊ/.Z.ADC=180°,•••MN//BC,•AMN=B,4AMN+ADN=180°,.4,D,N,MÒqᐳᙊAZ-MND4-/-MAD=180°,•AE,DEᑖ²XᑖNB4D,Z.CDA,•END+2DFN=END+2^DAE=180°,•DFN=DAE,.4,F,E,஺ÒqᐳᙊDEN=^DAF,/-AFM=Z.ADE,•Z.MAF=180°-Z.DAF-MND=180°-DEN-MND=Z.EDN=Z.ADE=Z/4FM,•MA=MF,:.MN=MF+NF=MA+ND.ᦑ⌱:D.ᙠNMÏeNF=NO,rsOF,AF,ᵫ4,B,C,஺Òqᐳᙊd4MNO+4M40=180°,ᵫMN//BC,dÔ4MN+4WN=180஺ᑮA,D,N,MÒqᐳᙊÕᵫAE,DEᑖ²XᑖÔBAD,Z.CDA,4F,E,஺Òqᐳᙊᵫ4M4F=180஺{4/MF{

9/MND=180°-/DEN-/MND=4EDN=Z.ADE=/.AFM,dMv=MF,ᓽdMN=MF+NF=MA+ND.⚪i⌕ὃkᙊᑁsÒÙOḄឋbÒqᐳᙊ⚪Ḅᐵ$%¶ÚdÛÜÝᑭᵨÒqᐳᙊ.9.ூ7ᫀ௃(13,0)ூ᪆௃:Úq8(5,-2)ᐵuxßḄàáq᜛ᑣB'(5,2),rs48'äåæ,ç¹xßḄèqé%®ᩩ°ḄqP,~ëq4(1,3)ஹ8'(5,2)ḄìÝ᪆!Sí=î+b(k50),ÌÍk+b=3,5k+b=2,ÌÍvB'ᡠᙠìݹxßḄèqPḄᙶ᪗ᓽMy=0¨xḄfᑣ0=-ò+9ᡠx=13,ᑣqPḄᙶ᪗S(13,0).ᦑ7ᫀS:(13,0).ÚqB(5,-2)ᐵuxßḄàáqB',ᑣB'(5,2),rsv᜛äåæç¹xßḄèqé%®ᩩ°ḄqP,ᵨóÇ»ᦪmdëqv(1,3)ஹ᜛(5,2)ḄìÝ᪆!᪷^ᙶ᪗ßqḄᙶ᪗ᱯqy=0dxḄfᓽSqPḄᙶ᪗.⚪ὃḄ%ᨬôõÝö⚪ᵨóÇ»ᦪm{ᦪḄ᪆!7÷ö⚪Ḅᐵ$%ø¼q±ùÝúᨬôḄû.10.ூ7ᫀ௃6ூ᪆௃:~YO4B0CḄÙæSa,YODOFEḄÙæSb,᝞S67ABOD+$9:7QDEF=St^ABF+S^ADF+SADEF,•••|(b+a)-b+a2=|-b(a+d)+3+|a2,w10⚓ᐳ20⚓

10ᓽ஺2=6,v\k\=6,Afc=6.ᦑ7ᫀS6.~YO4B0CḄÙæSa,YODOFEḄÙæSb,᝞ᑭᵨ☢ÿ+a)•b+a2=|-b(a+b)+3+|a2,ᡠa?=6,ᯠᑭᵨkḄᑮkḄ.⚪ὃᦪᦪkḄᙠᦪy=!"#$%&"'#ᔣx)*y)ᑖ,-ᚖ/$0ᙶ᪗)3ᡂḄ56Ḅ☢89:|k|.11.ூ=ᫀ௃4ூ@᪆௃@y=x2-7.x-3Ḅ⚔#ᙶ᪗G(1,"4),᝞#(1,-4)ᐵDx)ḄEF#G(1,4),y=mᡂHḄxាJᨵL'$:.m=4,ᦑ=ᫀG4.NOᦪ$PᔠᦪRm=4.⚪ὃSTᦪḄUឋWXᑭᵨYᣚNOᦪ$ᦪ6Pᔠ@⚪9ᐵ[.12.ூ=ᫀ௃yூ@᪆௃@•••4஺$BE,CFGAABCḄLᩩ_$᧕aB,C,E,Fb#ᐳᙊ,••.AEF^LABCJAFEF3•________—_"AC~BC~5’ᓽcos/B4C=|,4:.sinZ.BAC=.•.ᙠRM4BE$BE=ABsin^BAC=6•|=y.

11ᦑ=ᫀGg.h⚪ὃijLj6ḄឋW*┦jLjᦪḄឋW.⚪9"⍝᪷nijLj6ḄឋWPᔠjḄLjᦪo@Ḅpᔠ⚪$⌕rᙊḄឋWsᵨX⌕rᦪ6PᔠtuḄsᵨ.13.ூ=ᫀ௃v5ூ@᪆௃@᝞$wx4D,!4DḄ#G,wxEG,FG,ᑣzG=DG=1AD,DE1AC,•••^AED=90°,••.AADE9ijLj6$•••EG=1z஺{ijLj6|}Ḅ/~D|}Ḅ"$vDF1AB,Z.AFD=90,.•.ADF9ijLj6$FG=(ijLj6|}Ḅ/~D|}Ḅ"),•EG=FG=AG=DG,,••;A,F,D,E9#GGᙊADGiḄᙊ$•#4(-4,0),#C(0,4),•OA=OC,•Z,OAB=45°,•LEGF=90°,vEG=FG,.•.EFG9~ῪijLj6$EF=y[2EG=V2X-AD=—AD,22⌕EFᨬ$ᨬ$•••#஺ᙠBC$S4D1BC$zDᨬ$h$SMBC=48-OC=-BC-AD,12⚓$ᐳ20⚓

12ABOCADBC•.•#4(—4,0),#8(2,0),#C(0,4),OC=4,AB=6,BC=V224-42=2$.c6X412-75.•.“■=¥”=ᵴ=$ᦑ=ᫀG¡.5ᐜᑨ¤OAFFG9~ῪijLj6$OEF=^40$ª«ᑨ¤O4D18CEFᨬ,2ᨬᵨLj6Ḅ☢8oO4D,ᓽROP®.h⚪¯⌕ὃijLj6ḄឋW$b#ᐳᙊ$ᙊᕜj:ᳮ$~ῪijLj6Ḅᑨ:*ឋW$ᑨ¤OEF=H4஺9@⚪Ḅᐵ[.214.ூ=ᫀ௃2002ூ@᪆௃@b}64BC0ᑁ´ᨵᨵn'#$ᑁ´ᑖᒘᡂ4+2x(n-l)=(2n+2)'Lj6.ᦑn=2x1000+2=2002.ᦑ=ᫀG2002.ᨵ1'#$ᑁ´ᑖᒘᡂ4'Lj6Xᨵ2'#$ᑁ´ᑖᒘᡂ4+2=6'Lj6Xº»ᨵ3'#$ᑁ´ᑖᒘᡂ4+2x2=8'Lj6Xᨵ4'#$ᑁ´ᑖᒘᡂ4+2x3=10'Lj6Xᨵ½'#$ᑁ´ᑖᒘᡂ4+2X(n-1)=(2n+2)'Lj6.h⚪ὃ6ḄYᓄÀÁ⚪$@ÂhÀÃÄឋÁ⚪$ᐵ[ᙠÅÆஹᑖ᪆Èaᦪn$ÉÊËÌÍÎḄU0"'6ḄÏÐὶ$ÃÉᐸÓ½.⚪◤r9ᑮÕᑖᒘᡂḄLj6Ḅ'ᦪ.15.ூ=ᫀ௃@:ᵫ☄Ú2Û"Ý")$(z=2%—1àᐭMḄ⊤äå$M=3%—2y4-4z=3%—y(1—x)+4(2x—1)=y%—y,

13çèxஹyஹzᙳGêëìᦪ$rx>0ᡠ•1(l-x)>0,Jx-1>0ᓽ<1,x$MᨵᨬG"%í=1$MᨵᨬᜧG7.ᦑM=3x-2y+4zḄᨬG"$ᨬᜧG7.ூ@᪆௃᪷nᐵåx+3y+2z=303x+3y+z-4oOy*z0xḄᐵå$çèxஹyஹzᙳGêëìᦪ$oOOḄ!3$D9RoOMḄᨬᜧ*ᨬ.⚪¯⌕ὃᦪᨬÁ⚪ஹð~åḄឋWஹ@Lᐗ"Tòóô$@=⚪Ḅᐵ[9õy*zᵨx⊤öOᩭ$h⚪ᨵ":øù.16.ூ=ᫀ௃(l)Pi$P3<(2)•••#MQ2)*#N(l,8)9#4Ḅú'“~û#”$AM=AN,••#4ᙠ/üMNḄᚖiýᑖ/.þMN0ᐸᚖiýᑖ/ÿC,4Ḅᙶ᪗(m,n),᝞1ᡠ.•.•M(l,2),N(l,8),.••CḄᙶ᪗(1,5),AM=AN=n=5,•••CM=3,AC=7AM2-CM2=,4m=1—4=—3ᡈm=1+4=5,•••ZḄᙶ᪗(3,5)ᡈ(5,5).(3)᯿⚪᝞2ᡠ.14⚓ᐳ20⚓

14জ071஺"஺A$L&ᨵ(•)஺AḄ*+2,."7\Ḅᙶ᪗(0,—2))ঝ஺72$44ᑗ"6ᑗ"2•••LḄ7᪆9y=yx(x>0)./M20T2=30°.ᙠRtC”2஺72E4M2஺72=30°,M2T2=2,:.OT=2MT—4,222."GḄᙶ᪗(஺4).HIᡠJKtḄLMO2

15Ḅᙶ᪗pAM,CMḄᑭᵨqᳮtm4CḄnᔠCḄᙶ᪗ᓽtu4Ḅᙶ᪗)(3)ᑖiὃ⇋জ஺7;஺"ᵫᙊḄ*+tuAḄᙶ᪗)ঝOR$L4ᑗ"6ᑗ“2ᵫLḄ7᪆9tu4M2஺&=30°,ᙠRtAMzORE730Ḅ~tm஺7?Ḅyztu72Ḅᙶ᪗.HIᓽtutḄLMO.⚪ὃijḄ_kஹ{|Ḅᚖ~ᑖ{ஹᦪḄឋஹqᳮp730Ḅ~7⚪Ḅᐵ`K(1)ᑭᵨijḄ_kl9mAPiAP,AP3Ḅ2M)(2)ᑭᵨ“^_”Ḅqr¡4ᙠ{|MNḄᚖ~ᑖ{I)(3)ᑖ஺$OT$L4¢i¡ᙊGḄᙶ᪗.17.ூcᫀ௃7K(1)•~{y=[%+2$x£(4,$y£(C,•••4(-4,0),C(0,2),¤¥ᱥ{y=-§+bx+c¨4,Ci-x16—4b+c=0(c=27uF=~l.(c=2••¥ᱥ{Ḅ7᪆9Ky=-|x2-|x+2.(2)©y=0,———x+2=0,227uª=—4ᡈx=1,•6(1,0).᝞஺«DM19£(4cM,8«BN¬¬£(ACN,:DM”BN,DME~2BNE,DE_DMBE~BN16⚓ᐳ20⚓

16.__DE_DM"S2-BEBBN"6஺Ḅᙶ᪗a,2•D(a,—^a-|a+2),•M(aja+2),a/v(l2&一-2a124-=-a2=-++-552)5-S22S的最大值为41---S.25ூ7᪆௃(1)ᵫ⚪tu4(-4,0),C(0,2),®ᐭ¥ᱥ{y=-]/+bx+c,°ᡂ²ᐗ´µ7¶ᓽt)(2)᪷¸⚪t¹8(1,0).஺«஺M_Lx£(4CM,B«8N1x£(4cN,ᡠDDM஻BN,ᡠº=ᘤ=ᘤ.6஺Ḅᙶ᪗a,ᑣ“e½¾)+2),M(a,|a+2),ᵫ.⊤ÀDMÁBNḄÂ7¶²ᦪḄឋtunv.⚪Ã⌕ὃÅqÆᦪÇmᦪ7᪆94ÈḄឋ$ᑨq²ᦪḄឋ^4ᐵᑁËᐵ`ÌḄ☢ÎÏÐᓄ{|Ï.18.ூcᫀ௃প7:᝞1EFAH஻CDBCGH.1•AD//BC,AH//CD,.••ÔÕ4HCC`ÖÔÕ.-.AH=CD,AD=BC,■•AB=CD,AB=AD,BC=2AD,•■AB=BH=AH,48H`^Õ•/B=60°.

17(2)×Ø:᝞2EÙÚCD.vABCD^Q஺ḄᑁÚÔÕ48+44஺஺=180஺,♦AE=EC,•0D1AC,:.DA=DC,•••ÔÕ4BCD`^ÛÕÜ⊡ÔÕ.(3)7K᝞2-1EÙÚ஺4,OC,AG,CG,«FM1CGM,FNJ.AGGN.•••OD1AC,AD=Þ•Z,AOE=/COE,GA=GC9•,Z-AOC=2/ABC,•Z.AOE=Z.ABC,24AF•••taiE—aiFF•OE=OA=\/AE24-OE2——,44259•GD=20A=—,DE=OD-OE=22AAD=y/AE2+DE2=—,2GA=GC=>JGD2-AD2=10,18⚓ᐳ20⚓

18vBG=48:.ACB=BCG,vZ.AGF=CGF,••F`CAGCḄᑁG.FM=FN=FE,6FM=FN=FE=d,•SAACG=^AC+AG+GQ-d=^-ACEG,•d=3,:.EF=3,GF=EG-EF=8-3=5.(4)7K᝞3EÙÚAC,«4MJLBCM,FNBCN,6AC(80K.38D`~+•ᓃBAD=BCD=90°,vBA=BC,BD-BD,••Rt.ABDRt.CBD(HL),•Z,ABD=CBD,••OA—OB.••Z-BAF=ABD=CBD,6Z_B4F=a,ßàJz_BCT7=BAF=afvBA=BC,DBA=DBC,BD1AC,BKC=90°,:.ACM+CBD=90°,••,AMBC,:./.ACM+ᓃCAM=90°,••Z.CAM=CBD=a,•••AMIBC,FNIBC,

19•AM//FN,=—tana=—%,AEAMACcosaAC6OK=m,AK=nOB=OA=r,ᑣC/7=2M,AC=2n,fᙠRtZkAOKE,m24-n2=r.AKntanZ-ABK=tana=x=—=----BKm+rn-mx•r=᦮ᳮuK=Iân2x2m1-x21.1AV=----2X=---------=——+-x,J2n222•••y=--x2+-(x>0).ூ7᪆௃(1)᝞1E«(BCãäåÇ×ØCæBH`^Õᓽt.(2)×ØDA=DC,/B+AADC=180஺ᓽt.(3)᝞2—1EÙÚ஺4OC,AG,CG,«çM1CGM,FN14GN.7~m4G,GC,EG,×ØF`CAGCḄᑁGmEFᓽt7èé⚪.(4)᝞3EÙÚ4C,«AM1BCM,FNA.BCGN,6AC(BOK.ᵫ4M஻FN,ᑣCF=2m,AC=2n,äåÇm?ḄMᓽt7èé⚪.⚪ìᙊHᔠ⚪ὃᚖ+qᳮᙊᕜqᳮ┦ᦪqᳮᐰ^ḄᑨqÁឋÖ{Ḅឋ^¹ð7⚪Ḅᐵ`ñòóôõᵨö÷{ñòᵨÐᓄḄøäøὃé⚪ìEὃù£⚪.20⚓ᐳ20⚓

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭