安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案

安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案

ID:83249353

大小:2.90 MB

页数:11页

时间:2023-03-11

上传者:老李
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第1页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第2页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第3页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第4页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第5页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第6页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第7页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第8页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第9页
安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案_第10页
资源描述:

《安徽省淮北市树人高级中学2020-2021学年高一下学期期末考试数学Word版含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

树人高中2020-2021学年度高一年级第二学期期末考试数学试卷本试卷分为第Ⅰ卷(选择题)和第二Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分。在每小题给出的四个选项中,有且仅有一项是符合题目要求的,答案填写在答题卷上.)1.已知全集为实数集R,集合,,则 A.B.C.D.【答案】C2.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【详解】,,“”是“”的必要不充分条件,故“”是“”的必要不充分条件,故选B.3.在平面直角坐标系中,已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线上,则=()A.–2B.2C.0D.3.【答案】B【详解】设点为角终边上任意一点,由三角函数定义,再根据诱导公式.故选B.4.以直线为渐近线的双曲线的离心率为()A.B.C.或D.4【答案】C.解析:或,所以或,选C。5.在中,,,点C在AB边上,且,则

1A.B.C.D.5.【答案】A解:,,,,在AB边上,且,,则6.函数的图象大致为()A.B.C.D.6.【答案】C【详解】,,∴是偶函数,排除B,D,时,,,,排除A.只有C可选.故选:C.7.已知四面体中,分别是的中点,若,,,则与所成角的度数为()A.B.C.D.7.【答案】D8.已知直线l过点且倾斜角为,若l与圆相切,则

2A.B.C.D.8.【答案】A解:圆的圆心坐标是,半径,设直线l的方程为,即,显然,由题意得:,化简得,解得:或,,,.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知是三个平面向量,则下列叙述错误的是()A.若,则B.若,且,则C.若,则D.若,则【答案】ABCA,若,可取,,则,故A错误;B,若,且,当,时,则与不一定相等,故B错误;C,若,当时,与不一定平行,故C错误;D,若,则,所以,,故,故D正确.故选:ABC10.已知曲线.则下列说法正确的有()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为D.若m=0,n>0,则C是两条直线

311.将函数f(x)=2cosx图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将得到的图象向左平移π个单位长度,得到函数g(x)的图象,则下列说法正确的有(  )A.g(x)为奇函数B.g(x)的周期为4πC.∀a∈R,都有g(x+π)=g(π﹣x)D.g(x)在区间[]上单调递增,且最小值为11.【答案】ABC【解答】解:函数f(x)=2cosx图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,可得y=2cosx的图像,再将得到的图象向左平移π个单位长度,得到函数g(x)=2cos=﹣2sin的图象,对于A:g(﹣x)=﹣2sin()=2sin=﹣g(x),故A正确;对于B:由于ω=,所以T=4π,故B正确;对于C:由于x=π时,函数取得最小值,故函数关于x=π对称,故g(x+π)=g(π﹣x),故C正确;对于D:g(x)在区间x∈[]上单调递减,在x单调递增,故D错误.故选:ABC.12.如图:在长方体中,是其中四个顶点,若,则下列叙述错误的是()

4【答案】BD第Ⅱ卷(非选择题共90分)三.填空题(本大题共4小题,每小题5分,共20分.答案填写在答题卷上.)13.短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则△ABF2的周长为  .13.【解答】解:614.在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在体积为的鳖臑中,平面,且,,则该鳖臑外接球的表面积为  .14.【解答】解:15.在△ABC中,a,b,c分别是内角A,B,C的对边,其中A=,b+c=4,M为线段BC的中点,则|AM|的最小值为  .15.【解答】解:因为M为线段BC的中点,所以,故=,因为A=,b+c=4,所以,

5由基本不等式可得,,当且仅当b=c=2时取等号,所以,故,所以|AM|的最小值为.故答案为:.16.已知F是双曲线的右焦点,P是C左支上一点,,若周长的最小值是6a,则C的离心率是.16.解:由题意可得,,设,由双曲线的定义可得,,,则的周长为,当且仅当A,P,共线,取得最小值,且为,由题意可得,即,则,四、解答题:(本大题共6小题,其中第17题10分,其余每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知:(1)若,求的坐标;(2)若与的夹角为,求.17.【解析】(1)设,则由及得……………………2分解得∴或…………………………………5分(2)∵∴…………………………………………7分∴,∴.………………………………………10分18.在△中,角、、的对边分别为、、,且,.(1)求角的大小;(2)若,,求和△的面积.

618.【解析】(1)因为,所以.…………………………2分因为,所以,所以.…………………………………………………4分因为,且,所以.…………………………………………………………6分(2)因为,,所以余弦定理,得,即.解得………………………………………………9分…………………………………………………………12分19.已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值.19.【解析】(1).……………………(2分)∵,∴,∴,∴函数的值域为………………………………(4分)(2),当,………………………………(6分)∵在上是增函数,且,∴,

7即,化简得,………………………………(10分)∵,∴,∴,解得,因此,的最大值为1.……………(12分)20.如图,在四棱锥P-ABCD中,AB⊥AD,CD⊥AD,PA⊥平面ABCD,PA=AD=CD=2AB=2,M为PC的中点.(1)求证:BM//平面PAD.(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存在,确定点N的位置;若不存在,请说明理由.【解析】(1)证明:取PD的中点E,连接EM,AE,则有且,而且,∴,.∴四边形ABME是平行四边形,即BM∥AE.………………3分∵AE⊂平面PAD,BM⊄平面PAD,∴BM∥平面PAD.………………5分(2)解:当N为AE的中点时,MN⊥平面PBD.理由如下:………………6分∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,又AB⊥AD,PA∩AD=A,即AB⊥平面PAD,………………7分∵PD⊂平面PAD,∴AB⊥PD,又PA=AD,E是PD的中点,即AE⊥PD,而AB∩AE=A,∴PD⊥平面ABME.……………9分

8作MN⊥BE,交AE于点N,∴MN⊥PD,又PD∩BE=E,∴MN⊥平面PBD.………………10分易知△BME∽△MEN,而,∴,即,而,∴N为AE的中点.………………12分21.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积21.【答案】(1)(2)……………………4分……………5分………………………………2分(2)由(1)可知的轨迹是以点为圆心,为半径的圆,由于,故在线段的垂直平分线上,………………………6分又在圆上,从而,………………………………7分因为的斜率为3,所以的斜率为,所以的方程为,………………………………9分又,到的距离为,………………11分所以的面积为.………………………12分22.已知椭圆的离心率为分别为左右焦点,直线l:与椭圆C交于M、N两点,的重心分别为G、H,当时,的面积为.求椭圆C的方程;当时,证明:原点O在以GH为直径的圆的外部.解:由题意可得离心率,,所以可得,所以椭圆的方程设为:,………………………………………2分

9当时,直线l的方程:,将其直线方程代入椭圆中可得,解得,所以,所以,………………………………4分由题意可得,解得:,所以椭圆的方程为:;…………………………………………………5分证明:设,,由题意的重心分别为G、H,所以,,………………………………6分联立直线l与椭圆的方程:整理可得:,,,………………………………8分………………………………10分因为,所以,所以,所以,所以可证原点O在以GH为直径的圆的外部.……………………………12分

10

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭