资源描述:
《四川省仁寿县2020-2021学年高二下学期期末模拟考试数学(理)Word版含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
高2019级仁寿县第四学期期末模拟试卷理科数学试卷数学试题卷(理科)共4页.满分150分.考试时间120分钟.注意事项:1.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.2.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试题卷上答题无效.4.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知i为虚数单位,复数,,若z为纯虚数,则()A.B.C.2D.2.某学校决定从该校的2000名高一学生中采用系统抽样(等距)的方法抽取50名学生进行体质分析,现将2000名学生从1至2000编号,已知样本中第一个编号为7,则抽取的第26个学生的编号为()A.997B.1007C.1047D.10873.对两个变量进行回归分析,得到一组样本数据:,则下列说法中不正确的是()A.由样本数据得到的回归方程必过样本中心B.残差平方和越小的模型,拟合的效果越好C.用相关指数来刻画回归效果,越小,说明模型的拟合效果越好D.若变量之间的相关系数为,则变量之间具有线性相关关系4.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、乙两人的平均成绩分别为,下列说法正确的是()A.,且乙比甲的成绩稳定B.,且乙比甲的成绩稳定C.,且甲比乙的成绩稳定D.,且甲比乙的成绩稳定5.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是()第10页共10页理科试题
1A.这7天电影《你好,李焕英》每天的票房都超过2.5亿元B.这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小C.这7天电影《你好,李焕英》的当日票房占比逐渐增大D.这7天中有4天电影《唐人街探案3》的当日票房占比超过50%6.如图所示的程序框图,若输入x的值为2,输出v的值为16,则判断框内可以填入()A.k≤3?B.k≤4?C.k≥3?D.k≥4?7.5人站成一排,若甲、乙彼此不相邻,则不同的排法种数共有()A.72B.144C.12D.368.苏格兰数学家科林麦克劳林(ColinMaclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:,试根据此公式估计下面代数式的近似值为()(可能用到数值ln2.414=0.881,ln3.414=1.23)A.3.23B.2.881C.1.881D.1.239.函数(其中为自然对数的底数)的图象大致是()A.B.C.D.10.已知的二项展开式中二项式系数之和为64,则下列结论正确的是()A.二项展开式中各项系数之和为B.二项展开式中二项式系数最大的项为C.二项展开式中无常数项D.二项展开式中系数最大的项为第10页共10页理科试题
211.已知函数是函数的导函数,对任意,,则下列结论正确的是()A.B.C.D.12.已知函数,,设为实数,若存在实数,使,则实数的取值范围为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13.曲线及围成的平面区域如图所示,向正方形中随机投入一个质点,则质点落在阴影部分区域的概率为__▲___14.复数(是虚数单位)是方程的一个根,则实数___▲___15.已知函数的定义域为,且的图像如右图所示,记的导函数为,则不等式的解集是____▲___16.若函数图象在点处的切线方程为,则的最小值为___▲___三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤.17.(本小题10分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.18.(本小题12分)某企业有A,B两个分厂生产某种产品,规定该产品的某项质量指标值不低于120的为优质品.分别从A,B两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:第10页共10页理科试题
3(1)根据频率分布直方图,分别求出B分厂的质量指标值的中位数和平均数的估计值;(2)填写列联表,并根据列联表判断是否有99%的把握认为这两个分厂的产品质量有差异?19.(本小题12分)某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:(1)请用最小二乘法求出关于的回归直线方程(结果保留两位小数);(2)现从2012—2018年这7年中抽出三年进行调查,记年利润增长-投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.参考公式:,.参考数据:,..20.(本小题12分)已知函数.(1)求函数的最值;(2)求证:.21.(本小题12分)第10页共10页理科试题
4某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率均为,乙笔试部分每个环节通过的概率依次为,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为,,乙面试部分每个环节通过的概率依次为,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立.(1)求乙未能参与面试的概率;(2)记甲本次应聘通过的环节数为,求的分布列以及数学期望;(3)若该校仅招聘1名在职教师,试通过概率计算,判断甲、乙两人谁更有可能入职.22.(本小题12分)已知函数为自然对数的底数)(1)若是的极值点,求的取值;(2)若只有一个零点,求的取值范围.高2019级仁寿县第四学期期末模拟试卷理科数学参考答案一、选择题1.C2.B3.C4.A5.D6.A7.A8.B9.C10.D11.C12.B二、填空题13.14.15.16.三、解答题17.解:(1)由已知得,则,所以切线斜率,···························1分因为,所以切点坐标为,·····················································2分所以所求直线方程为,故曲线在处的切线方程为.·······················································3第10页共10页理科试题
5分(2)由已知得,设切点为,···················································4分则,即,得或,所以切点为或,切线的斜率为或,·················································8分所以切线方程为或即切线方程为或····························································10分18.解:(1)B分厂的质量指标值;由,则的中位数为······································2分的平均数为·········6分(2)列联表:···············································································7分由列联表可知的观测值为:··································11分所以有99%的把握认为两个分厂的产品质量有差异.················································12分19.解:(1),第10页共10页理科试题
6,,········································5分故关的回归直线方程为:····························································6分(2)由表格可知,年这年中年份20122013201420152016201720181.521.92.12.42.63.6的可能取值为1,2,3················································································7分,,······························10分可得:·······························12分20.解:(1)由题可知··································································1分所以,当时,,单调递减;当时,,单调递增,所以··································································4分(2)方法一:,··························································8分易得,,所以,得证······················································12分方法二:,令,第10页共10页理科试题
7,故在上单调递增.············································5分又,又在上连续,使得,即,.(*)·····························7分随的变化情况如下:↘极小值↗.由(*)式得,代入上式得.令,,故在上单调递减.,又,.即.·················································································12分21.解:(1)若乙笔试部分三个环节一个都没有通过或只通过一个,则不能参与面试,故乙未能参与面试的概率.·······························3分(2)的可能取值为0,1,2,3,4,5,,,,,第10页共10页理科试题
8,.··················································································7分则的分布列为:012345故.···········································9分(3)由(2)可知,甲成为在职教师的概率,乙成为在职教师的概率.因为,所以甲更可能成为该校的在职教师··················································12分22.解:(1),······································································1分当时,,;,,此时恒成立,则不是函数的极值点······························································································3分所以···················································································4分(2)只有一个零点,显然是,所以分为两种情况第1种情况:满足,此时·····················································6分第2种情况:无解,令,;第10页共10页理科试题
9①当时,,单调递增,故在上存在使得;·························································································8分②当时,方程显然无解;·······························································9分③当时,解得,当时,,单调递减;当时,,单调递增,则,即,所以·································································································11分综上所述:················································································12分第10页共10页理科试题