欢迎来到天天文库
浏览记录
ID:83109369
大小:17.22 KB
页数:3页
时间:2024-08-30
《大一物理小论文范文大全大学物理论文范文.docx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
大一物理小论文范文大全大学物理论文范文谈谈角动量守恒及其应用摘要:角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学、原子物理以及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念.本文主要对角动量守恒定律和其应用进行论述。对定律本身进行了简略的阐述,并就其守恒条件及其结论进行了定性分析。正文:大家也许小时候都有过一个疑问:人们走路的时候为什么要甩手呢?为什么如果走顺拐了会感觉特别别扭呢?一个常见的解释是,为了保持身体平衡。这种解释了和没解释没什么区别的答案是永远正确的,问题是甩手到底是怎么保持身体平衡的? 原来这一切都是我们大学生所熟知的角动量以及动量守恒的原因,很神奇的是原来用动量守恒可以解决很复杂的问题,但是却用了最简单的方法。1.角动量:角动量也称为动量矩,刚体的转动惯量和角速度的乘积叫做刚体转动的角动量,或动量矩,单位千克二次方米每秒,符号kgm2/s。角动量是描述物体转动状态的物理量。对于质点在有心力场中的运动,例如,天体的运动,原子中电子的运动等,角动量是非常重要的物理量。角动量反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一,开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。W.泡利于1931年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。角动量是矢量,角动量L=r×F=r×Fsin2.力矩:在物理学里,力矩可以被想象为一个旋转力或角力,导致出旋转运动的改变。这个力定义为线型力乘以径长。依照国际单位制,力矩的单位是牛顿-米[1]。3.作用力矩和反作用力矩:由于作用力和反作用力是成对出现的,所以它们的力矩也成对出现。由于作用力与反用力的大小相等,方向相反且在同一直线上因而有相同的力臂,所以作用力矩和反作用力矩也是大小相等,方向相反,其和为零。 3.角动量守恒定理:在不受外界作用时,角动量是守恒的。角动量守恒是跟空间各项同性有关系的,也就是说空间的各个方向是没有区别的,这叫做物理定律的旋转不变性,由这种不变性,在理论上,可以得到角动量守恒。动量守恒是跟空间均匀性相关的,也就是说物理定律在各个地方是一样的,地球上的物理定律跟月亮上的物理定律是一样的,这叫做空间平移不变性,由空间平移不变性,可以从理论上推导出动量守恒。另外,还有能量守恒是跟时间平移不变性相关的,也就是说,过去,现在和未来物理定律是一样的话,就有这么一个量,叫做能量是守恒的。所有这些,都是由一个叫做诺特定理的东西得出来的[2].4.质点系对参考点的角动量守恒定律:由n个质点组成的质点系,且处于惯性系中,可以推导出作用于各质点诸力对参考点的外力矩的冲量矩∑Mi×△t,等于质点系对该参考点的角动量的变化量,即△L=∑Mi×△t同样当∑Mi=0时,质点系对该参考点的角动量守恒。如果n个质点组成的质点系,处于非惯性系中,只要把质点系的质心取作参考点,上述结论仍成立。4.角动量守恒的判断: 当外力对参考点的力矩为零,即∑Mi=0时,质点或质点系对该参考点的角动量守恒。有四种情况可判断角动量守恒:①质点或质点系不受外力。②所有外力通过参考点。③每个外力的力矩不为零,但外力矩的矢量和为零。甚至某一方向上的外力矩为零,则在这一方向上满足角动量守恒。④内力对参考点的力矩远大于外力对参考点的合力矩,即内力矩对质点系内各质点运动的影响远超过外力矩的影响,角动量近似守恒[3]。5.角动量守恒定理的应用:角动量守恒定理在我们的现实生活中非常的常见,航海航天领域和人们平常所使用的工具器械,以及日常中见到的现象很多一部分都可以用角动量守恒定理来解释。(1)行星运动:受到太阳的万有引力这一有心力,由于万有引力对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒。 (2)芭蕾舞旋转:跳芭蕾舞的时候,运动员在转动的过程之中,会收缩双手,来实现减少转动惯量,则角速度变大,转动得越快。 (3)跳水:跳水运动中,运动员在在完成动作时,会将身体蜷缩成球形,目的也是减小转动惯量,加快转动速度,更好地完成动作。 (4)航空:安装在轮船、飞机或火箭上的导航装置回转仪,也叫陀螺,回转仪的核心器件是一个转动惯量较大的转子,装在“常平架”上。常平架由两个圆环 构成,转子和圆环之间用轴承连接,轴承的摩擦力矩极小,常平架的作用是使转子不会受任何力矩的作用。转子一旦转动起来,它的角动量将守恒,即其指向将永远不变,因而能实现导航作用。宇宙飞船在空间中运行的时候,通过深处或受其两根杆来改变转动惯量,从而改变转动的速度。 (5)体操:体操运动员在完成空翻动作的时候,也是尽量蜷缩身体,是转动惯量减小,加快转速。 (6)跳远:跳远的时候,起跳之后由于力会产生一个转动惯量,如果不向后摆手来抵消这个转动惯量,运动员就会向前翻转。 角动量守恒定律是一个很有用的定律,我们要更好地理解他,才能在日常生活中活用。参考文献[1]漆安慎,杜婵英。普通物理学教程 力学[M].北京:高等教育出版社,2005.6~8。 [2]胡海云。大学物理。北京:国防工业出版社,2009.1。[3]贾玉磊,贾瑞皋。刚体角动量的定义和定义状态量的原则[D]。山东 东营:中国石油大学(华东)物理科学与技术学院,2008,13~16。
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处