资源描述:
《固相微萃取ppt课件》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
固相微萃取技术(SPME)
1概述SPME的原理SPME装置及萃取步骤方法SPME的影响因素SPME与分析仪器的联用技术SPME的应用SPME的发展前景主要内容
2固相微萃取操作更筒单、携带更方便、操作费用也更加低廉,另外克服了固相萃取回收率低、吸附剂孔道易堵塞的缺点,因此成为目前所采用的试样预处理中应用最为广泛的方法之一。SPME已开始应用于分析水、土壤、空气等环境样品的分析。一、概述
3一、概述1989年;Pawliszyn首次开发研究Supelco1993年推出了商品化的SPME装置1995年Pawliszyn等;空气中苯系物分析;SPME在气相色谱中快速进样装置;萃取丝内用CO2冷却装置1997年Pawliszyn等;测定病人呼吸气中一些成分的SPME萃取装置2001年Pawliszyn等;便携式SPME装置2004年Pawliszyn等;加装聚四氟乙烯密封盖的便携式现场测试用SPME装置2007年;96个SPME微阱盘自动化进样装置固相微萃取(solidphasemicroextraction)
4二、SPME的原理以熔融石英光导纤维或其它材料为基体支持物,采取“相似相溶”的特点,在其表面涂渍不同性质的高分子固定相薄层,通过直接、顶空及膜保护等方式,对待测物进行提取、富集、进样和解析。然后将富集了待测物的纤维直接转移到仪器(一般是GC或HPLC)中,通过一定的方式解吸附(一般是热解吸或溶剂解吸),然后进行分离分析。
5固相微萃取法(SPME)的原理与固相萃取不同,固相微萃取不是将待测物全部萃取出来,其原理是建立在待测物在固定相和水相之间达成的平衡分配基础上。设固定相所吸附的待测物的量为WS,因待测物总量在萃取前后不变,故得到:C0•V2=C1•V1+C2•V2(1)式中,C0是待测物在水样中的原始浓度;C1、C2分别为待测物达到平衡后在固定相和水相中的浓度;V1、V2分别为固定相液膜和水样的体积。二、SPME的原理前后
6
7
8纤维固相萃取使用的是一支类似注射器的萃取装置,主要由两部分构成:一部分是萃取头,另一部分是手柄。三、SPME装置及萃取步骤方法
9萃取头是一根长约1cm、涂有不同固定相涂层的溶融石英纤维,石英纤维一端连接不锈钢内芯,外套细的不绣钢针管(以保护石英纤维不被折断)。手柄用于安装和固定萃取头,通过手柄的推动,萃取头可以伸出不锈钢管。三、SPME装置及萃取步骤方法
10萃取分析步骤SPME方法是通过萃取头上的固定相涂层对样品中的待测物进行萃取和预富集。SPME操作包括三个步骤:A涂有固定相的萃取头插入样品或位于样品上方;B待测物在固定相涂层与样品间进行分配直至平衡;C将萃取头插入分析仪器的进样口,通过一定的方式解析后进行分离分析。三、SPME装置及萃取步骤方法GCHPLC000000插入样品瓶伸出萃取头萃取样品收回萃取头插入GC进样口萃取头进入接口GCHPLC
11萃取方法直接法(Di-SPME)适合于气体样品或干净水样中的有机化合物。顶空法(HS-SPME)纤维暴露于密封样品上方的气相中。适合于任何基质,尤其是直接SPME无法处理的脏水、油脂、血液、污泥、土壤等膜保护法(membrane-protected-SPME)通过一个选择性的高分子材料膜将试样与萃取头分离,以实现间接萃取,膜的作用是保护萃取头使其不被基质污染,同时提高萃取的选择性。衍生化法(derivatizationSPME)冷SPME法(cooledSPME)三、SPME装置及萃取步骤方法
12
13四、SPME的影响因素萃取温度温度是直接影响分配系数的重要参数。在顶空萃取中,升高温度会促进挥发性化合物到达顶空及萃取纤维表面,然而SPME表面吸附过程一般为放热反应,低温适合于反应进行。
14萃取时间不同的待测物达到动态平衡的时间长短,取决于物质的传递速率和待测物本身的性质、萃取纤维的种类等因素。挥发性强的化合物在较短时间内即可达到分配平衡,而挥发性弱的待测物质则需要相对较长的平衡时间。四、SPME的影响因素
15搅拌强度增加传质速率,提高吸附萃取速度,缩短达到平衡的时间。磁力搅拌,高速匀浆,超声波振荡等。采取超声振动就比电磁搅拌达到平衡的时间大大缩短。但由于磁力搅拌所用设备简单,目前的分析仍多使用此法。四、SPME的影响因素
16盐效应盐析手段(加NaCl或Na2SO4)可提高本体溶液的离子强度,降低有机物的溶解度,使极性有机待萃物(非离子)在吸附涂层中的K值增加,提高萃取灵敏度。溶液pH值由于固定涂层相属于非离子型聚合物,对于吸附中性物质更有效,故为了防止液体试样中待测物质离子化,提高被吸附能力,还需要调节pH值,以改变分析组分与样品介质、固定相之间的分配系数。四、SPME的影响因素
17衍生化反应减小酚、脂肪酸等极性化合物的极性,提高挥发性,增强被固定相吸附的能力。原位衍生法、纤维上衍生法和进样口衍生法。萃取头的选择固定液涂渍在一根熔融石英(或其他材料)细丝表面构成萃取头。内部涂有固定相的细管或毛细管,这种设备称为管内SPME(in-tubeSPME)。四、SPME的影响因素
18基于萃取头上的涂层在整个装置中的重要性,将它称为SPME装置的“心脏”。选择涂层时应注意:对有机分子要有较强的萃取富集能力合适的分子结构,有较快的扩散速度良好的热稳定性四、SPME的影响因素
19涂层选择基本依据:基于分析物和萃取涂层的相似相溶原理涂层的性质必须与分析物的性质相匹配,极性较强的涂层将萃取极性较强的化合物,而非极性涂层则萃取非极性化合物。实际萃取过程中,选用涂有何种固定相的萃取纤维涂层,应当综合考虑分析组分的极性、分子量、沸点、及其在各相中的分配系数。如:被萃取化合物的辛醇-水分配系数(Kow)涂层-水分配系数(Kdv)
20按用途分类:商品化涂层一般可以分为非极性、中等极性和极性3种涂层非商品化涂层到目前为止,科研工作者已开发了多种具有优良性能的涂层。涂层所使用的主要材料:聚二甲氧基硅烷(PDMS)、二乙烯基苯(DVB)、聚乙二醇(CW)、聚丙烯酸酯(PA)等。涂层介绍
21按萃取纤维的聚合物涂层与石英表面结合的方式分为:键合涂层(bonded)和非键合涂层(non-bonded)根据涂层的性质分为:交联涂层(crosslinked)和部分交联涂层(partly-crosslinked)
22
23
24Nano-structuredleaddioxide(纳米结构二氧化铅)asanovelstationaryphaseforsolid-phasemicroextraction.JournalofChromatographyA1134(2006)
25五、SPME与分析仪器的联用技术SPME-GC技术SPME-HPLC技术SPME-MS技术
26固相微萃取与气相色谱技术的联用SPME-GCSPME与GC联用是研究最早也是目前发展得最成熟的技术。这一领域的研究目前主要集中在接口研制、萃取头的制备。采用顶空法(headspace),吸附具有挥发性或半挥发性的化合物;再在GC的气化室里脱附气化进行分析。优点:无溶剂化,色谱柱效不会影响。缺点:适用的范围较窄;挥发/半挥发物(20%);不能分析生物大分子、对温度敏感的物质(如蛋白质)。
27使用SPME-GC联用分析USEPA524.2方法规定的挥发性气体样品的情况。利用该方法有效地分离出了60种化合物固相微萃取与气相色谱技术的联用
28固相微萃取与液相色谱技术的联用SPME-HPLCSPME技术也已成功地与HPLC联用并应用于非挥发性/离子型金属化合物形态分析,这为在GC条件下难以分析的试样中半挥发性和非挥发性待测物的分析提供了可能性。SPME与HPLC联用的关键在于SPME的解吸过程是否能与HPLC的进样系统匹配,即能否使解吸液的体积足够小,以避免在进样后产生明显的柱外效应或出现超负荷现象而导致色谱峰拓宽,使分辨率下降,直接影响分析的灵敏度。
29固相微萃取与液相色谱技术的联用目前,已有商品化的SPME-HPLC接口,由六通阀和一个特别的解析池构成。解析池与进样管相连,当六通阀置于采样状态时,纤维插入解析池,六通阀旋至进样状态,流动相开始冲洗纤维,使富集的化合物解析下来。
30capilarycoatedpolymericmaterial固相微萃取与液相色谱技术的联用萃取头直接接触样品,等到吸附平衡后,再送入到进样器内进行脱附后分析。这种联用技术正好和SPME-GC互补。缺点:吸附平衡时间长,脱附条件不易优化,萃取头负载材料可用的不多。
31固相微萃取与液相色谱技术的联用
32固相微萃取与质谱技术的联用离子阱传输线
33PesticidesanalysisbySPME/IonTrapMS固相微萃取与质谱技术的联用
34六、SPME的应用在环境水、气中痕、微量有机物萃取分析在食品添加剂中香味成分的分析应用在法医、临床检验中的分析应用在化工领域的应用在金属离子及其螯合物分析中的应用
35六、SPME的应用
36例1Directcomparisonofsolid-phaseextractionandsolid-phasemicroextractionforthegaschromatographicdeterminationofdibenzylamine(DBA)(二苄胺)inartificialsalivaleachatesfrombabybottleteats(G.Niessner,C.W.Klampfl,AnalyticaChimicaActa,414(2000):133–140)SPESPME六、SPME的应用
37例2.固相萃取搅拌棒萃取-气相色谱分析海水中的多环芳烃(徐媛等,分析化学,2005,33(10):1401-1404)固相萃取搅拌棒(SBSE)是在SPME基础上发展的新技术,萃取时吸附搅拌棒自身完成搅拌,可避免SPME中搅拌子对PAHs的竞争吸附;同时,由于SBSE中的PDMS(硅氧烷)萃取固定相体积一般为50~250μL,比SPME所用固定相量大50~500倍,表面积提高100倍,因此提高萃取量50倍以上,更适合痕量有机物的萃取富集。利用固相萃取搅拌棒(SBSE)萃取海水中的多环芳烃,然后用热解吸脱附-气相色谱分析。实验结果表明,SBSE方法对16种多环芳烃的萃取回收率分别在33.5%~122.4%之间;对标准样品的检出限为2.74~13.5ng/L;RSD(相对标准偏差)为3.8%~13.1%。用此方法测定了大连海岸海水中的多环芳烃含量。
38例3.自制固相微萃取装置-气相色谱法测定空气中痕量苯(何轶伦等,环境科学与技术,2006,29(4):44-47)1、萃取头:自制的固相微萃取装置:选取日本产的2HSAKURA的2H0.3mm的自动铅笔芯作萃取头。因为铅笔芯本身就是石墨化活性炭纤维,它是优良的固体吸附剂,可以吸附多种气体和有机物质,并且它的吸附作用是范德华力作用的结果,不会跟有机物相互作用。具体的处理方法如下:将铅笔芯放入50%的HF溶液中浸泡24h后,取出冲洗;放入马弗炉中高温(500℃)煅烧4~5h,取出用水冲洗。经过一系列处理后,萃取头通过一次性注射器的针孔,用强力胶固定在推杆上,能自由伸缩,待用。
392、采样:自制的固相微萃取装置经老化后,直接对一新装饰的房间(一星期内无人居住)进行现场吸附取样,室内温度20℃,湿度60%。3、结果和讨论:对影响SPME的因素(空气柱、萃取时间、解吸时间和温度)进行了讨论;对所建立的方法进行了系统评价,结果表明:建立的方法对空气中苯的测定具有良好的线性关系(相关系数R=0.9998),检出限为0.01mg/L,3个含量点的相对标准偏差在允许的范围7%以内,回收率为98.18%。
40例4.固相微萃取-高效液相色谱联用测定环境水样中双酚A的自由溶解态浓度(胡霞林等,分析实验室,2006,25(7):14-17)自由溶解态浓度(FreelyDissolvedConcentration)是自由溶解在水相,而不与任何介质或系统组分结合的物质的浓度。它不仅与分析物的总浓度有关,而且与基体介质浓度和容量,及其对分析物的亲和力相关。研究表明,化合物的自由溶解态浓度是其在环境中迁移和分配,以及在生物中累积的驱动力,是解释化合物的可给性的关键参数。因此,自由溶解态浓度的测定越来越受到环境科学工作者的重视,并已经发展了多种分析方法。双酚A(BPA)是一种内分泌干扰物,它的长期低剂量暴露对生物的影响是当今环境化学研究的热点问题之一,测定环境中BPA的自由溶解态浓度,对其环境化学行为研究和风险评价具有十分重要的意义。
411、仪器:高效液相色谱系统(美国安捷伦公司),由Agilent1100型单元泵和Agilent1100型荧光检测器组成;SPME-HPLC接口、手动57331型固相微萃取纤维手柄、商品固相微萃取纤维50μmCWPTPR(美国Supelco公司)。SPME-HPLC接口由一个Rheodyne六通阀和一个60μL解吸室构成,该解吸室取代了一般液相色谱仪中的进样环。2、实验方法:在100mL萃取瓶中加入搅拌磁子和100mL分析液,盖上带有聚四氟乙烯隔膜的有孔盖子,将SPME不锈钢针管插入瓶中,推出萃取头,调节萃取头的位置,使搅拌磁子在搅拌时不会损伤萃取头,且萃取头完全浸入溶液中。萃取4h后,收回并取出萃取头,插入解吸室进行动态解吸测定。
423、实验结果:在环境水样常见pH(5~8)、缓冲容量(5~200mmol/L)和盐度(0~500mmol/L)条件下,4h可以达到萃取平衡。100mL样品足以避免样品耗损。并且在pH为6.4时,方法的线性范围为0.1~250μg/L,检出限为0.03μg/L,相对标准偏差(5μg/L,n=3)为1.1%。采用本方法测定了污水处理厂排水口的双酚A的自由溶解态浓度。
43例5.固相微萃取-气相色谱-质谱联机测定饮用水中的嗅、味化合物(吴德好,化学工程师,2005。115(4):24-27)近年来饮用水的水质问题已成为国内外研究的热点。原水水质不断恶化与不断提高的出水水质之间的矛盾日益突出。我国生活饮用水卫生标准中对水的嗅、味做了规定,但是对产生嗅、味的化合物没有做出具体说明。虽然某些嗅、味的来源与工业污水或消毒工艺的副产品有关,但用户的意见主要是自然发生的嗅、味,特别是土腥味和霉烂味。针对产生嗅、味的化合物进行分析,确认带有土腥味和霉烂味的两种主要化合物是土味素(geosmin)和2-甲基异冰片(MIB)。这些有机物是放线菌和兰-绿藻的代谢产物,嗅阈浓度很低。
441、仪器与试剂:saturn2200瓦里安GC-MS气相色谱-质谱联机;采用电子流轰击离子化(EI)和离子阱检测器(EITM);PC-420型SPME固相微萃取操作平台;微型磁转子(美国SUPELCO公司),SPME装置的萃取头为75μmCarboxen萃取头(PK/3)2、试验方法:在容积为40mL的萃取瓶中加入10.0gNaCl、一个转子和30mL样品溶液或待测水样,立即用带有硅橡胶垫的瓶盖封闭。如果水样的pH值不在5.0~7.0之间,用稀HCl或稀NaOH预先调整。将固相微萃取装置的不锈钢针管插入瓶中,设定温度为60℃,调节转速为1500r/min,推出萃取头,调节萃取头的位置,使其接近液面,但不能浸入溶液。30min后收起萃取头,拔出针管,迅速插入气相色谱汽化室内进行热解析,并进行GC-MS分析。
453、结论:本文采用SPME-GC-MS方法对饮用水中的嗅、味化合物进行分析,方法简便,检出限低,并得出最佳的检测条件:萃取头涂层为arboxen;顶空萃取法的萃取量为浸入式的2倍;萃取平衡时间30min;搅拌速度为1500r/min;pH值为5.0~7.0;温度为60℃。
46例6.固相微萃取-气相色谱/质谱(SPME-GC/MS)联用分析海水中痕量有机磷农药(王凌等,环境化学,2006,25(1):110-114)1、实验方法:取8ml萃取液置于15ml萃取瓶中,加入磁力搅拌子(长约1cm,直径约3mm),用顶端带有孔和聚四氟乙烯隔垫的盖子密封,电磁搅拌,将SPME萃取纤维(85μm厚涂层的聚丙烯酸酯)直接插入萃取瓶中,保持涂层完全进入水相,萃取针套管的其它部分不与萃取液接触,防止水进入萃取针管.在室温下萃取30min,将SPME直接插入GC进样口热解吸10min,用GC-MS进行定性与定量分析。该法简便、高效、无需有机溶剂,适合于海洋水体中痕量有机磷农药的分析。
472、SPME条件的选择:萃取涂层:聚二甲基硅氧烷(PDMS)和聚丙烯酸酯(PA)两种萃取头由于极性不同,对有机磷杀虫剂的萃取效果也不同.研究表明:各有机磷化合物对应的PA的响应值普遍高于PDMS,这是因为OPPs为极性化合物,与极性PA涂层有较大的吸引力。由于PA对甲基对硫磷和毒死蜱有更好的萃取效率,因此,选择PA萃取涂层。两种萃取纤维对于乐果基本表现不出富集效果。萃取时间:根据SPME的非平衡理论,在达到SPME萃取平衡之前,如保持操作条件一致,纤维上待测物的含量正比于其在水相的初始浓度,因此,可进行定量分析。由于敌敌畏易水解,且随温度升高,分解速度加快,综合考虑灵敏度和分析速度,选择30min萃取时间,在室温20±2℃下进行实验。
48图1.SPME萃取的海水空白GC-MS图图7.SPME萃取添加有机磷混标的天然海水GC-MS图
49例7.固相微萃取GC-MS快速分析火场残留物中的汽油成分(高展等,分析测试学报,2004,23(增刊):295-297)火场残留物如碳灰、烧残物等通常经过样品预处理后进行分析鉴定。传统的样品预处理方法往往操作繁琐、费时、重复性差,而且往往需要用大量有机溶剂,不利于分析人员的身体健康,对环境也造成一定污染。通过控制SPME萃取头固定相的极性、取样时间、萃取温度等萃取参数,可实现对火场残留物汽油成分的高重复性、高准确性的测定,最小检测限可达ppm级。
501、实验仪器:2、样品采集:
51将93号汽油2滴滴入500g砂土中,采用100um聚二甲氧基硅氧烷萃取头,按前述样品采样方法进行采样测定,获得相应的总离子流色谱图,图1,鉴定了其中13种化合物。分别取两个火灾现场进行分析。火灾现场残留物分别按前述样品采集方法进行采样测定,获得相应的总离子流图,图2、图3,将其与汽油标样的总离子流图(图1)进行对比。3、结论:
52
53七、SPME的发展前景随着SPME-联用技术的发展及SPME本身和萃取方式的改进,SPME与分析仪器联用的适用性也会逐步扩大和成熟。SPME、联用技术以及理论研究必将会有大的发展,成为环境、医药、生物材料、食品、精细化工、农业等领域实验检测的有力手段。
54TheEnd!Thanks!