《校本程生活中的数学》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
精选资料—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节可修改编辑
1精选资料最新全面教学资源,打造完美教学模式《生活中的数学》校本课程序言数学是打开知识大门的钥匙,是整个科学的基础知识。创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。使学生成为学习的主人,学有兴趣,习有方法,必有成功。学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。目录第一课:让数学帮你理财第二课:导航的双曲线可修改编辑
2精选资料第三课:电冰箱温控器的调节——如何使电冰箱使用时间更长第四课:赌马中的数学问题第五课:对称——自然美的基础第六课:对数螺线与蜘蛛网第七课:斐波那契数列第八课:分数维的山峰与植物第九课:蜂房中的数学第十课:龟背上的学问第十一课:Music与数学第十二课:e和银行业第十三课:几何就在你的身边第十四课:巧用数学看现实第十五课:商品调价中的数学问题第十六课:煤商怎样进煤利润高第十七课:把握或然,你会更聪明可修改编辑
3精选资料第十八课:顺水推舟,克“敌”致胜——例谈反证法的应用第十九课:抽屉原理和六人集会问题第二十课:数独游戏与数学第二十一课:集合与生活第二十二课:生活中的立体几何第二十三课:排列组合处理问题第二十四课:算法妙用第二十五课:世界数学难题欣赏——四色猜想第二十六课:世界数学难题欣赏——哥尼斯堡七桥问题第二十七课:世界数学难题欣赏——费马大定理第二十八课:世界数学难题欣赏——哥德巴赫猜想第一课:让数学帮你理财可修改编辑
4精选资料某银行为鼓励小朋友养成储蓄习惯,提供一个颇有心思的储蓄计划。参加者除可有较高年息优惠外(见附表),更可以特价换取手表一只。先不论以低价换表是否真的超值,但这种宣传方法颇具心思。手表与户口连在一起,正好意味着利息随时间递增的关系。 储蓄计划优惠年息一览表每月存款(港币)$1,000存期(月)每年复息利率到期存款(港币)利息(港币)到期本息金额(港币)9121518246.625%7.125%7.375%7.75%8.00%9,00012,00015,000 18,00024,000252473759 1,1462,1069,25212,47315,75919,14626,106 银行的宣传小册子更注明十一岁至十七岁小朋友已可开个人户口。这群“准客户”大致是接受中学教育的适龄儿童。无论有兴趣参加与否,总希望他们或早或迟懂得储蓄计划背后的数学原理。 这个储蓄计划是以每月存入定额存款来计算利息,而存款期限愈长,利率则愈高。为了更有效理解表中“到期本息金额”如何计算出来,且让我们设为每月存款的金额,而则为月息利率。月息利率是由“每年复息利率”除以12而来的。譬如说,存款期限为9个月,从表中得知每年复息利率是6.625%可修改编辑
5精选资料,因此月息利率为6.625%÷12,即约是0.5521%。 存款1个月后,到期本息金额: 存款2个月后,到期本息金额: 存款3个月后,到期本息金额: 余此类推,存款个月后,到期本息金额应为: 为了简化这数式,设。 因此, 括号内的数式在数学上称为等比数列: 首项是x,公比是x。利用公式,我们便可把的数式写成:可修改编辑
6精选资料 。 现在就让我们运用这公式找出表中第一行的“到期本息金额”: , 代入数式, (准确至最接近的整数) 表中其余的“到期本息金额”不如留给你算算,看看表中列的数字是否有错误吧。第二课:导航的双曲线 我们小时侯都曾梦想,长大以后要当上船长就好了。在茫茫的大海上,惊涛骇浪,你能顺利地指挥着船队驶向前方吗?好,让我们的双曲线来帮助你吧。它是大海的导航员。 可修改编辑
7精选资料 先来看一看原理。假如你站在广场上,广场的东西两侧各装有一只喇叭,并且放着欢快的音乐:北京的京山上光芒照四方,毛主席就是那金色的太阳,多么温暖……我站在广场上,听见第一只喇叭把“金色的太阳”传到耳朵后的半秒钟,又听到了第二声“金色的太阳”。由于两个喇叭离耳朵的远近不同,所以产生了听觉上的时间差。再换一个地方,是否还有这样歌声相差半秒的情形呢?实际上,只要人站的位置与两只喇叭的距离差与第一次一样就可以了。因此可以找到很多这样的点。这些点就构成了双曲线的一支。可修改编辑
8精选资料轮船航行在海上时,它就处于人的位置。岸上有两个无线电发射台,用电波代替了喇叭里传出的音乐。轮船行驶在某一位置时,就可以从接收的电波的相位差,测出轮船与电台的距离差,由此确定了一条以两个电台为焦点的双曲线。若再和另一对电台联系,可以确定出另一条双曲线,两条双曲线有一个交点,船就处于这一点上。这一切都是在一瞬间完成的,因为有很多现代化的工具来帮助我们,你明白了吗?船长们就是这样来导航的。第三课:电冰箱温控器的调节人民生活水平日益提高,许多家庭都购买了电冰箱等家用电器。但是有许多家庭并不了解电冰箱的工作原理,更不了解电冰箱温控器的工作原理及其调节方法。不正确的使用电冰箱势必会缩短其使用寿命,带来了不必要的麻烦,同时也浪费了自然资源和财力。电冰箱工作了很长时间,却一直不停机。检查后发现只是温控器调节的不正确。这使我们认识到了冰箱温控器对于电冰箱的重要性。因此,我们来研究一下电冰箱温控器的正确使用方法,即如何使电冰箱的使用寿命更长。问题:如何正确调节电冰箱温控器,使电冰箱使用寿命更长。可修改编辑
9精选资料电冰箱制冷是靠中温低压的液态制冷剂进入蒸发器吸收热量汽化为低温低压的气态制冷剂,达到蒸发器周围降温使冰箱内部冷却的目的。压缩机、冷凝器、干燥过滤器、毛细管则是帮助并保证在蒸发器中已使用过的制冷剂回复到中温低压的液体,能再一次送回蒸发器吸热汽化,实现单向连续循环制冷。蒸发器是电冰箱中唯一制冷的器件。压缩机把蒸发器出来的低温低压的汽态制冷剂经回气管由压缩机吸入气缸,被压缩为高温高压的气态进入冷凝器,把蒸发器中吸收的热量和压缩机在压缩做功时转换的热量,利用制冷剂与周围介质之间有较大的温差,通过冷凝器全部散发到空气中。制冷剂在冷凝器中因放热而被液化。这高压中温液态制冷剂经干燥过滤器吸收其中的水分,滤除其中的杂质,进入毛细管节流降压,使高压液态制冷剂降为低压而能回到蒸发器重复使用。电冰箱就是这样由各种制冷剂作工质,在封闭系统中作单向连续循环,把冰箱内热量不断的转移到箱外而达到制冷目的。可修改编辑
10精选资料电冰箱压缩机是开开停停间歇工作的。电冰箱达到箱内的设定温度是通过温度控制器控制压缩机的开、停机来完成的。压缩机运转时间长,即制冷时间长,则箱内温低;反之箱温就高。温度控制器二个触点串联在压缩机电路中,当箱内温度低到某一设定温度时则温控器触点跳开,压缩机停转,暂停制冷,随后箱内温度逐渐提高,在箱内温度高到另一设定温度时则温控器触点闭合,压缩机又运转制冷……如此循环。使箱内温度保持在一定范围内。电冰箱温控器中的感温包感受蒸发器的温度,当温度升高或降低时,感温元件中感温剂膨胀或收缩,使非刚性元件感温腔(波纹管或膜盒)推进或退缩,从而改变感温元件与弹簧片之间的作用力通过温控器中机械传力放大,使感温腔微小形变产生的微小位移放大,控制电触点,使其闭合或断开电路。温控器指向的数字,并不表示确切的温度,而是表示控制温度高低的程度趋向,数字小表示控制在较高温度,数字大则表示控制在较低温度。 我们认为,压缩机的使用寿命在很大程度上决定了电冰箱的使用寿命。而影响压缩机工作时间的因素主要有:外界温度、温控器档位、冷冻室食品量、开关冰箱门习惯。当电冰箱工作稳定后,冷冻室食品量对其影响十分微小,但不可以忽略不计。无论是在寒冷的冬季,还是在炎热的夏季,冰箱中的食品都是在不断的吸热和放热。当冰箱内冷汽散失时,食品吸热;当电冰箱制冷吸热时,食品放热。这在夏季时最为明显:当电冰箱停机时,冰箱内食品越多其停机时间越长,因为如果假设食品的平均比热容不变,那么根据物理学关于热能的公式Q=M×C×ΔT 可知食品量与停机时间成反比。其中Q为食品热量变化,C可修改编辑
11精选资料为食品平均比热,ΔT食品温度变化量。因此,冰箱内食品量的多少也是十分重要的。实际上,外界温度随季节变化而变化,温控器档位靠人工调节,冰箱内的食品量和如何开关门对于一个家庭来讲变化不会很大,因为已经形成了习惯。但是,使用时如果压缩机长时间连续工作,压缩机温度就会升高,就会造成热冲击。过多的热冲击会缩短压缩机的使用寿命。因此,我们只要调节温控器档位,使电冰箱冷冻室温度不低于某一温度,而且压缩机在非长时间连续工作的条件下(不超过一个小时),工作时间与工作、停机的时间和的比值最小(如工作10分钟,停机10分钟,则比值为0.5),即压缩机的使用寿命更长,就可以使电冰箱的使用寿命更长。同时,电冰箱的耗电量也降低了。这样,一台电冰箱在使用过程中既省电,又可以延长使用寿命,当然十分经济。通过电冰箱生产厂家的电话咨询,专业技术人员肯定了我们的上述看法。于是我们就此进行了一些实验,并通过电话咨询得到了一些准确的数据。在北京等中国北方城市,冬季的供暖由市区县的各供暖单位负责保证。政府规定,冬季居民室内的温度不得低于16摄氏度。北京市的供暖单位现在一般能够保证这个温度在18摄氏度左右,最高温可达20摄氏度,最低温绝不低于16摄氏度。因此,可以认为我国北方冬季家庭室内温度在18摄氏度左右。又因为,我国北方春秋季节家庭室内温度也在18摄氏度左右,偏冷的地区依然有暖汽等供暖,甚至常年不断。所以,可以认为,我国北方春秋冬三季的家庭室内温度均在18摄氏度左右。就一般家庭而言,熟食一般现吃现买,生食一般只放几个星期。电冰箱冷冻室的食品量一般占冷冻室容积的五分之三左右,且一般变化不是很大。就是说,一般家庭的食品量对冰箱的影响基本相同。可修改编辑
12精选资料 综上所述,我们理想化的实验条件是我国北方春秋冬三季一般家庭的电冰箱。在研究这个问题时可以把食品量和室内温度作为常数来考虑。由于每次开冰箱门时都会使冰箱内食品吸热升温,所以不同人的开门习惯和速度会影响到冰箱的制冷效果。比如说:老人可能手脚不是很利落,而且拿一件东西要想一下;年轻人可能一只手开门,另一只手就把东西拿出来了。为了简便计算,我们可以认为,在一个家庭中不考虑老人与青年人的分别,只考虑平均到每个家庭成员的使用效果,那么各个家庭的情况基本相同。结果是,我们在计算过程中可以忽略这一因素的影响。我们想利用家用电冰箱来进行一次实验。于是我们选用了长岭阿里斯顿——BCD208型电冰箱,在保持室温为18摄氏度且食品量始终占冷冻室有效容积五分之三不变的情况下,测定了一些数据。这种电冰箱属于中等档次的家用电器,制冷效果属于一般水平。目前许多家庭使用的电冰箱的制冷效果和保温能力都与其相差无几。这些满足了本论文前面交代的实验条件,可以作为该条件下的一个例子,来解决这个问题。于是我们开始了实验。实验进行了一个多星期,每组数据(既一个档位)间间隔二个小时,让电冰箱进行调节,以保证数据的准确性。 这台冰箱的温控器旋钮有六个档位,分别是从零到五。第零档为停机档,既电冰箱压缩机停止工作,不会启动;第五档为速冻档,即压缩机一直启动,不会停机。因此,我们不能选第零档,因为冰箱不会制冷;不能选第五档,因为冰箱持续工作,即浪费电能,又会造成热冲击,还有可能冻坏食品。我们设工作时间与工作、停机的时间和的比值为y,设电冰箱温控器档位为x。则自变量x的取值范围为(0,5)。在平面直角坐标系中描点作图,为了便于计算,且不影响结果的正确,我们在计算时把原y值扩大了100倍。这样可以方便计算,也能方便作图。观察散点的分布,我们认为这些点极有可能是在一条抛物线上,因此设y关于x的函数为。我们在后面附有实验数据列表和用绘图工具《几何画板》作出的函数图象。其中,表格包含五组数据,在测定时每组数据之间至少间隔两个小时,因为电冰箱需要约一个小时来调整。函数图象有一个大致的轮廓。图中的空心圆点表示描点,实心圆点表示当x可修改编辑
13精选资料为4.5时函数图象上的点。 我们分别以三组数据为一组,把五组数据分成了十组。设五组数据对应函数图象上的点从左至右依次为A、B、C、D、E,则将五组数据分组为:ABC、ABD、ABE、ACD……BDE、CDE。每组可分别解出一个函数,但都有一定误差。其中,凡是包含数据组E的组误差都十分大,且不太正常。我们认为是由于压缩机升温且冷凝器温度升高散热变慢,导致电冰箱工作异常。这种可能性十分大,属于正常现象。通过电话咨询,冰箱厂家的技术人员肯定了我们的想法,并告诉我们:目前一些高级的冷凝管可以大大提高散热效率,但造价颇高,且调节温控器就可解决问题,没必要多花钱去生产。于是把数据组E舍去,只计算前四组,又可以分为四组:ABC、ABD、ACD、BCD。以这四组数据分别解出一个函数,这四组函数中也存在误差,但是应该保留数据组A存在误差的那一分组。因为,温控器调得过低后也会造成冰箱本身的问题。由于档位越低,要求达到的温度越高(不一定始终在设定温度以下),所以要工作的时间就比较短,但停机时间缩短得更多。就是说,冰箱内的食品在较长时间内放出了热量,在较短的时间内又吸入了大致相同的热量。冰箱在这时需要适度调低要求达到的温度。这就是为什么要注意温控器的调节。就是说,由BCD解得的函数对于点A、D的误差属于合理误差。最后,只有BCD这一组的不合理误差最小(此时A点误差为-0.36),最后解得的函数即为所求的函数y=f(x)。由数据组BCD解函数: 可修改编辑
14精选资料 当x=2.574时,函数有最小值y=35.846; 所以,温控器旋钮应指在2.574的位置。可是由于实验中不可能消除误差,所以应指在2、3之间的一个位置,室温稍低时就调低一点儿,反之就高一点儿,一般家庭不用经常调,温度差2到3度不会有大影响。但是不同的电冰箱性能不同,具体的食品量在变化,外界温度也会上下浮动,每个人每一次开门造成的影响都不相同,不同品牌电冰箱温控器控制面板也不相同。所以忽略绝大多数家庭相同的因素,只须再考虑不同的电冰箱性能不同、电冰箱温控器控制面板也不相同。尽管不同的电冰箱性能不同,但是它们的工作原理相同,都是在不断的吸热、放热。就是说,它们在那个档位基本上都是最佳的。虽然电冰箱温控器控制面板不相同,但是内部旋转多少角度能调节多少温度,却是同样基本相同的。目前市场上比较多的样式主要有:“0”到“5”,“1”到“7”和“弱”、“中”、“强”。由于我们实验用的电冰箱配备的是第一种样式的温控器,所以对应到其它两种样式分别是“3”、“4”档之间和“中”略偏“弱”。可修改编辑
15精选资料问题解决了,是在中国北方春秋冬三季,一般家庭家用电冰箱温控器的调节。目的是如何更经济的使用好电冰箱。答案就是上一段最后的几句话。问题虽然很小,而且用的就是解方程的方法,但却能培养我们从生活中寻找数学问题、运用数学知识的好习惯。这对于推行素质教育是一个极佳的方法,它使学生因为自己的兴趣而学习,知识也就更加牢固。另外,这个问题可以扩展到其它方面。如下水道的清理问题,你必须知道什么时候清理最合理:时间早了浪费物资,晚了又极难工作。当然牵扯的量也是相当多的。我们相信,通过我们不断的学习,我们将解决更多的生活中的问题。第四课:赌马中的数学问题随着中国的改革开放,境外许多事物渐渐被生活在大陆的人知晓诸如赌马、六合彩等常在媒体中提及。对我们来说,了解一些原来不熟悉的东西也是必要的。其实,一些博彩游戏和古老的赌博有许多相似之处,我们可以用初等概率知识对其中的现象作一定的分析。 我们以赌马问题为例。为简便起见,假设只有两匹马参加比赛。通过对决定马匹胜负的各因素的研究以及对以往赛事胜负情况的统计分析,我们可得出两匹马各自胜出的实际概率。不失一般性,设其中一匹马胜出的实际概率为,则另一匹马胜出的实际概率为。那么,参赌者该如何下注以最大的限度确保他们能赢得钱呢?要解决这个问题必须先弄明白庄家的赔率是如何设定的。所谓赔率,是指押注一元钱于胜方所获得的总金额。举例来说,若赔率为1.65元,则如押注一元的一方恰好胜出,可得收益0.65元,加上本金,一共可得1.65元。若押注负方,则会失去所押注的1可修改编辑
16精选资料元,但不须另外再输钱。现在,我们知道了马匹胜出的实际概率,知道了庄家设定的赔率,就可以分析参赌者该如何下注。这里,设总金额为1元,并设在第一匹马上押注元,则在第二匹马上押注。至于具体押注多少,参赌者可以将总金额按该比例分配给这两匹马。于是,可得下表:马匹第一匹第二匹胜出的实际概率庄家设定赔率(元)押注(元)如果第一匹马赢,参赌者可得到元,再减去付出的1元,参赌者的收益为元;同理,如果第二匹马赢,参赌者收益为元。考虑到两匹马胜出的实际概率分别为和,参赌者的期望收益为,其中。另外,若参赌者把所有钱都押注于第一匹马时期望收益为;若参赌者把所有的钱都押注于第二匹马时,期望收益为。自然,参赌者希望收益,这样,他们才能以一个正的概率赢利。所以要求:。1)当,且,即当且时,不论取何值,恒大于0,且当趋向1时,趋向于极大值。实际上,当,即参赌者把钱全押注于第一匹马上时,有收益可修改编辑
17精选资料,所以参赌者应当把钱全部押注于第一匹马上。2)当且,即当且时,收益随着的变大而变小,且当趋于0时,趋于极大值。实际上,当,即参赌者把钱全押注于第二匹马上时,有收益。所以参赌者应当把钱全押在第二匹马上。3)当,时,为使,应满足: 。又∵,∴,即。即当,且时,参赌者按分配赌注可期望赢利。且当趋向于1时,收益趋于极大值。同1)情况可知,这时,参赌者应把钱全押注于第一匹马上,有收益。4)当,且时。这时不论赌注如何分配,参赌者的期望收益恒为负。在这情况下,参赌者介入其中是不理智的行为。 以上是参赌者在已知胜出概率及赔率时选择的策略。同样,庄家在设置赔率时,一定会对实际各匹马胜出的概率作一番认真研究,由此设定相应赔率。这样,他才有可能不赔本。由此当庄家设置一个赔率时,我们也可以反推庄家所估计的各匹马胜出的概率。例如,庄家赔率设定为15可修改编辑
18精选资料,则我们大致可以知道该马匹胜出概率大致应小于。 其实,在其它涉及赔率、押注的简单模型中,我们也可以用相应的方法进行分析。当然,这只是对实际情况的一种简化。现实生活中的赌马不会仅有两匹,并且要求出各马匹实际胜出的概率是件非常困难的事,在一般情况下,只能求得近似解。第五课:对称——自然美的基础在丰富多彩的物质世界中,对于各式各样的物体的外形,我们经常可以碰到完美匀称的例子。它们引起人们的注意,令人赏心悦目。每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷;蜂房的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的螺旋状颁都令我们惊讶。仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。 可修改编辑
19精选资料花朵具有旋转对称的性征。花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。旋转时达到自相重合的最小角称为元角。不同的花这个角不一样。例如梅花为72°,水仙花为60°。“对称”在生物学上指生物体在对应的部位上有相同的构造,分两侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。我国最早记载了雪花是六角星形。其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。既是中心对称,又是轴对称。 很多植物是螺旋对称的,即旋转某一个角度后,沿轴平移可以和自己的初始位置重合。例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。这种有趣的现象叫叶序。向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。“晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。第六课:对数螺线与蜘蛛网曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。摆下八卦阵,只等飞来将。”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。而且,结网是它的本能,并不需要学习。可修改编辑
20精选资料你观察过蜘蛛网吗?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧。在结网的过程中,功勋最卓著的要属它的腿了。首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上。然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住。为继续穿针引线搭好了脚手架。它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心。从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线。一般来说,不同种类的蜘蛛引出的辐线数目不相同。丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条。同一种蜘蛛一般不会改变辐线数。到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体可修改编辑
21精选资料相同的。现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。这是一条辅助的丝。然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。这样半径上就有许多小球。从外面看上去,就是许多个小点。好了,一个完美的蜘蛛网就结成了。 让我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断。只有中心部分的辅助线一圈密似一圈,向中心绕去。小精灵所画出的曲线,在几何中称之为对数螺线。 对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。大家可别小看了对数螺线:在工业生产中,把抽水机的涡轮叶片的曲面作成对数;螺线的形状,抽水就均匀;在农业生产中,把轧刀的刀口弯曲成对数螺线的形状,它就会按特定的角度来切割草料,又快又好。第七课:斐波那契数列斐波那契数列在自然界中的出现是如此地频繁,人们深信这不是偶然的。 (1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。 (2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。 斐波那契数经常与花瓣的数目相结合:可修改编辑
22精选资料 3………………………百合和蝴蝶花 5………………………蓝花耧斗菜、金凤花、飞燕草 8………………………翠雀花 13………………………金盏草 21………………………紫宛 34,55,84……………雏菊 (3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0可修改编辑
23精选资料,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。 (4)斐波那契数有时也称松果数,因为连续的斐波那契数会出现在松果的左和右的两种螺旋形走向的数目之中。这种情况在向日葵的种子盘中也会看到。此外,你能发现一些连续的鲁卡斯数吗?可修改编辑
24精选资料 (5)菠萝是又一种可以检验斐波那契数的植物。对于菠萝,我们可以去数一下它表面上六角形鳞片所形成的螺旋线数。 斐波那契数列与黄金比值 相继的斐波那契数的比的数列:可修改编辑
25精选资料 它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。第八课:分数维的山峰与植物大厅的灯光暗下来,帐幕徐徐打开,银幕上出现了根据J.R.R.Tolkien的三部曲“LordoftheRings”所改编的电影。Frodo在一个开阔的峡谷里溜达着。远处,锯齿状的冰雪覆盖着的山峰耸入云端。近处有些不知是什么种类的奇花异木在阳光下闪烁。转眼,屏幕上的奇景变成了一个男巫凝视着一只水晶球,在这球体的中央出现了一个堡垒,火焰正从它的城垛里窜出来。 虽然现在还很难说Frodo是否会在这样的电影里出现,但我肯定那些山峰、树木、水晶球以及火焰都会奇妙地出现在银幕上。这个成就主要将归功于Pixar公司(即从前的Lucasfilm计算机绘图实验室)所开发的软件和硬件。有家用计算机的读者都能够在计算机上作出基本类似于这些东西的图形来。由于本文篇幅所限,不能在此对水晶球和火焰作一个广泛深入的论述,但还是能够揭示产生它们的基本原理。 在上面描述的假想的电影中,我们可以把摄像机移向Frodo可修改编辑
26精选资料身后的那些山峰上。人们可能从来没有见过比这些山峰更令人生畏的大片陆地了。每一个大的山峰都由一些较小的山峰构成,而这些较小的山峰又由比它们更小的山峰组成,如此下去就形成了一种小山峰的无穷回归。即使一个有皮质脚的滴水嘴一样的海怪站在这样一个犬牙般的地方也会感到难受。 原则上,这样的一种山的图形是容易作出来的。为简便起见,我假定这山覆盖了一个三角形的地面。找出每条边的中点,用三条线段把这三个中点连起来。就把这三角形分成了四个较小三角形。用同样的办法再分这四个小三角形。这一过程不断进行,直到达到分辨率极限或计算时间极限为止。结果是得到一大堆令人感到枯燥无味的三角形。如果要使这图形变得生动一些,可以在作图过程中加进一条有关垂直方向上的规则:每当新的中点画在图上时,就使其向上或向下移动某一随机量。通常这个随机数必须随三角形的逐渐变小而减少。这一规则把那些三角形变成弄皱了的山峰和褶皱。 为什么这一种方法会作出那样逼真的山峰图案呢?答案在于这个过程中产生了一个分数维图形,即当图案不断放大时会显露出更多的细节的图形。分数维形态在自然界似乎是随处可见。我们可以用一个关于海岸线的例子解释分数维图形的基本概念。假设我们要用一根l000米长的测量杆测量出法国海岸线的长度,那么就得沿着海滩向前一杆一杆地进行艰难的测量,同时数出有多少个l000米。然而这样会把许多小的海湾和海岬遗漏掉,所以用这种办法测出的最后得数是不那么准确的。用一根l米长的测量杆重复这一过程,会得出一个更精确、数字更大的结果。但即使如此,也有大量的小海湾和岬地被遗漏掉了。无疑,用一根l厘米长的测量杆结果就会更为精确。可修改编辑
27精选资料一般规律是,当测量杆变小时,测出的海岸线长度会增大。测出的长度与测量杆杆长之比率为一个专门值,这个值称为分数维。分数维与通常说的维不同,它往往被表达成一个分数,而不是一个整数。例如我们讨论的海岸线的维数可能就是一个3/2的分数维。可以把这样的一种形状想象成一个介于一维形状(直线)和二维形状(平面)之间的中间形状。如果海岸线比较直,其分数维就接近于1。如果海岸线很曲折,其分数维就接近于2,此时它几乎填满一个二维平面。 自然界的分数维模型实际上隐含了细节的无穷回归。从计算机绘图的角度来看,无穷回归是无关紧要的问题;只要景物看来是具有各级放大水平上的细节就行了。在达到屏幕分辨率的极限之前,计算机上生成的山的特征就与上述分割过程中最终所得的三角形的特征一样精细。完整的山峰绘制算法太长太复杂,无法在此作足够详细的介绍。但有一个简单的程度可以绘出Mandelbrot峰的断面,它称为MOUNTAIN。该程序体现了沿垂直轴随机移动中点这一基本早想。开始时是一条水平线段。确定其中点,使其向上或向下移动一段随机地确定的距离,然后把由此产生的两个线段再分,并使其各自中点也按此规则移动。用类似于再分三角形的方法可把这一过程不断地进行下去。 程序MOUNTAIN有两个数组,叫做points和lines。其作用是保持计算机屏幕上的山的轮廓。每个数组分别有两列和足够多的行(比如说2048行)以方便地调整屏幕分辨率;points的两列是坐标值,而lines的两列则是下标。每条线段定义为数组points中表明该线段终点坐标的一对位置。观察一个普通的多边形通过一连串的再分后形成山的轮廓这一过程是非常有趣的,所以程序MOUNTAIN使每一次图案的形成都处于用户的控制下。在—可修改编辑
28精选资料次主循环结束时,程序询问用户是否需要另一次迭代,如果回答是肯定的,那么执行会再返回此程序的开头。 主循环的作用是把当前的点与线段的集合变成大1倍的新集合。为实现这一点,它一次一行地对数组lines进行扫描,查寻其对应点的下标并从数组poinlts中检索出它们的坐标。在已知某一给定线段的两个端点坐标后,程序就可以计算出该线段的中点坐标,同时随机地改变y坐标的值。下面所列出的算法过程为程序的编制提供了充分的基础,其中变量j和k是指数组points和lines中当前正保持着再分的最新结果的那些“行”。变量pts和lns记录在进入主循环之前构成山的点和线段的数目。开始时j等于pts,k等于lns。下标i从1到lns。 MOUNTAIN程序的这一部分在很大程度上是不言自明的。当第j点的坐标计算出来后,下标j就被存贮起来作为第i条线段的第二个点和第k可修改编辑
29精选资料条线段的第一个点。第i条线段的第一个点与其原来的一样,而第k条线段的第二个点与第i条线段原来的第二个点,即带有下标b的那个点相同。当循环最终计算后,pts和lns必须分别复置为j和k的最新值。变量range是在程序的开头由用户确定各再分点在垂直方向上随机移动量的最大值。每次循环结束时,该变量就要除以2,使得这一随机移动量与线段尺寸成比例地减小。函数random(range)用于表示在0和变量range的当前值之间所选择一个随机数。 如果Frodo身后的那些山峰是令人难忘的,那么,他周围的村木和植物就更是令人难忘。它们既逼真又奇特。之所以逼真,是因为它们有与真实植物一样的分枝,而之所以奇特是因为它们不是常见的物种。大概是图形设计者有太多的参数可以任他使用,因此他禁不住要创造一些新的植物种类。这些新的植物种类被叫做“嫁接”(graftal)植物,因为它们是在图形(graph)的基础上形成的,且有内在的的分数维性质。这里所谓的“内在分数维性质”,指的是用于生成植物图案的基本拓扑特征的规规则可以(但实际上没有)应用于屏幕分辨率的极限。简言之,植物的细枝条不会无限地回归成更小的枝条。一旦作为植物的基础的图形发展起来,计算机就能用大小、颜色、厚度、质地等解释植物的图形,从而把它变换成无数的令人信服的植物种类。 可修改编辑
30精选资料 某一给定植物所据以形成的图形是由L系统产生,这种系统是丹麦生物学家和数学家AristidLindenmeyer在1968年提出的一种语法类别。一个L系统实际就是一套用于从旧的字符串中推导新的字符串的规则。例如,根据下列规则,用数字0和1以及符号[和]能够生成一系列复杂的植物: 为了弄清如何应用这些规则,我们从由单个的符号0组成的字符串开始。将箭头左边的每一个符号都用与其对应的右边的符号来代替,就可以一个接一个地得到下列的字符串: 01[0]1 [0]011[1[0]l[0]0]ll[1[0]1[0]0]1[0]l [0]0可修改编辑
31精选资料 把每个数字(0或1)当作一条线段,每个括号当作一个分支点,就可把这样的字符串变换成树一样的图形。0和1所代表线段的长度相等,其区别在于0线段的外端上要加一片叶子,而1线段上则什么也不加。例如字符串1[0]1[0]0的茎是由三个不在括号内的符号组成的。最下面的是1线段,中间也是1线段,顶部则是0线段。两根枝条(每根均是一条0线段)从茎上长出来。第一根枝条长在第一条1线段上,第二根枝条则长在第二条1线段上。读者可以试画一下树茎最初几次生成的图案。为了使植物更逼真,对这个模型可以加上另外一些解释性的规则;例如,对于任何给定的茎(不管它是否主茎),都可以使枝条轮流地从左右两侧长出。 一个叫PLANT的由两部分组成的程序产生上述序列中的第n个字符串,然后把它表示成一个线段图。在该程序的第一阶段,PLANT将它所生成的字符串保存在被称为StringA及stringB的两个符号数组中。每一代植物图形轮流地占据两个数组中的一个,即某一数组中所存贮的那一代是由另一数组中所存贮的上;代得来的。也不一定非要在数组中存贮符号。只要程序的代换过程是正确的,数字0,l,2和3也完全可以。 L系统规则在条件语句中体现出来;例如可以采用下面这段算法编码把StringA的第i位上的1个0变成stringB中的九个新的符号: 如果stringA(i)=0,那么 stringB(j)←1 stringB(j+1)←2可修改编辑
32精选资料 stringB(j+2)←0 stringB(j+3)←3 stringB(j+4)←1 stringB(j+5)←2 stringB(j+6)←0 stringB(j+7)←3 stringB(j+8)←0 j←j+9 这里0和1代表它们自己,而2和3分别代表[和],如果stringA的第i个符号是0,那么,程序把序列l,2,0,3,l,2,0,3,0插入数组stringB中以下标j(即数组stringB的尚未填入符号的第;个年置)开头的九个连续位置上。程序PLANT的第一阶段中的一个单循环就含有四个上述的条件语句,每个语句相应于可能遇到的一个符号。循环用下标j来指出当前这一代中正被处理的那个符号。循环执行的次数依用户的愿望而定。在每一次生成后,程序PLANT会询问用户是否希望另一个更长的字符串。 PIANT的第二个阶段(即绘图阶段)把第一个阶段产生的字符串变换成一个图形。它循环地执行这一过程:只要左括号(或2)没有出现,它就在一个给定方向上绘出一系列线段。当碰到某一对括号中的左括号时。程序就在一个新的方向(从前一个方向反时针转45°)可修改编辑
33精选资料上绘出后面的线段。当对应的右括号出现后,这一过程就终止。这时画出一片叶子,它的形状和颜色都留给读者去想象。第二个左括号的出现使该程序又重复进行。只是现在的方向是顺时针45°。其他的工作都是自动进行的。 PIANT用了一个随被绘出的植物的复杂性而定的比例因数。例如,第n代植物的高度大约为2n条线段,如果屏幕的高是200个像元,那么每根线段就必须短于200/2n雄心勃勃的读者们无疑会尝试生成语法、枝条角度及叶片形状等方面的新花样。如果具有这些新花样的图案在同一屏幕上生成,植物和树木的风景就会出现了(当然不是很逼真的)。 Pixar绘图计算机的心脏是一个有24兆字节,2000×2000像元的存贮器,其分辨率对大多数应用是足够的。此外,每个像元由48个存贮位表示,足够存贮色采和透明度方面的信息。Pixar绘图计算机的大容量存贮器由四个高速并行完全可编程序的处理机操纵。它们每秒钟能执行约4000万条指令,其速度比普通的计算机大几个数量级。显示装置与存贮器问的数据交换速度可达每秒4.8亿个字节。 Pixar绘图计算机预定用于医学成像、遥感、工程设计及动画片制作这些领域中。也许还会用来制作我在本文开头所描述的假想电影。第九课:蜂房中的数学蜜蜂是勤劳的,它们酿造出了最甜的蜜;蜜蜂是聪明的,它们会分工合作,还会用舞蹈的形式告诉同伴:哪里有花源,数量怎么样。实际上,不仅如此,可修改编辑
34精选资料蜜蜂还是出色的建筑师。它们建筑的蜂房就是自然界诸多奇迹中的一个。 蜂房是正六棱柱的形状,它的底是由三个全等的菱形组成的。达尔文称赞蜜蜂的建筑艺术,说它是:天才的工程师。法国的学者马拉尔狄曾经观察过蜂房的结构,在1712年,他写出了一篇关于蜂房结构的论文。他测量后发现,每个蜂房的体积几乎都是0。25立方厘米。底部菱形的锐角是70度32分,钝角是109度28分,蜜蜂的工作竟然是这样的精细。物理学家列奥缪拉也曾研究了这个问题,它想推导出:底部的菱形的两个互补的角是多大时,才能使得蜂房的容量达到最大,他没有把这项工作进行下去。苏格兰的数学家马克劳林通过计算得出了与前面观察完全吻合的数据。公元4世纪,数学家巴普士就告诉我们:正六棱柱的蜂房是一种最经济的形状,在其他条件相同的情况下,这种结构的容积最大,所用的材料最少。他给出了严格的证明。看来,我们不得不为蜜蜂的高超的建筑艺术所折服了。马克思也高度地评价它:蜜蜂建筑蜂房的本领使人间的许多建筑师感到惭愧。现在,许多建筑师开始模仿蜂房的结构,并把它们应用到建筑的实践中去。可修改编辑
35精选资料第十课:龟背上的学问传说大禹治水时,在一次疏通河道中,挖出了一只大龟,人们很是惊讶,争相观看,只见龟背上清晰刻着图1所示的一个数字方阵。这个方阵,按《孙子算经》中筹算记数的纵横相间制:“凡算之法,先识其位。一纵十横,百立千僵,千十相望,万百相当。六不积算,五不单张。”可译成现代的数字,如图2所示。 方阵包括了九个数字,每一行一与列的数字和均为15可修改编辑
36精选资料,两条对角线上的数也有相同的性质。当时,人们以为是天神相助,治水有望了。后来,人们称刻在龟背上的方阵为“幻方”(国外称为“拉丁方”),属于组合数学范畴。使用整数1—9构成的3×3阶“拉丁方”唯一可能的和数是15,这一点只要把这“拉丁方”中所有数加起来便可证明,1十2十3十4十5十6十7十8十9=45,要把这几个数分配到三行(或列)使得每行(或列)有同样的和,那么,每行(或列)的和应为45/3=150 组合数学是数学中的一个分支,在实际生活中应用很广泛,请看下面的例子。 5名待业青年,有7项可供他们挑选的工作,他们是否能找到自己合适的工作呢?由于每个人的文化水平、兴趣爱好及性别等原因,每个人只能从七项工作中挑选某些工种,也就是说每个人都有一张志愿表,最后根据需求和志愿找到一个合适的工作。 组合数学把每一种分配方案叫一种安排。当然第一个问题是考虑安排的存在性,这就是存在问题;第二个问题是有多少种安排方法,这就是计数问题。接下去要考虑在众多的安排中选择一种最好的方案,这就是所谓的“最优化问题”。存在问题、构造问题、计数问题和最优化问题就构成了全部组合数学的内容。如果你想了解更多的组合数学问题,那就要博览有关书籍,你会得到许多非常有趣的知识,会给你许多的启发和教益。第十一课:Music与数学可修改编辑
37精选资料动人的音乐常给人以美妙的感受。古人云:余音绕梁,三日不绝,这说的是唱得好,也有的人五音不全,唱不成调,这就是唱得不好了。同样是唱歌,甚至是唱同样的歌,给人的感觉却是迥然不同。其重要原因在于歌唱者发声振动频率不同。 人类很早就在实践中对声音是否和谐有了感受,但对谐和音的比较深入的了解只是在弦乐器出现以后,这是因为弦振动频率和弦的长度存在着简单的比例关系。近代数学已经得出弦振动的频率公式是W,这里,P是弦的材料的线密度;T是弦的张力,也就是张紧程度;L是弦长;W是频率,通常以每秒一次即赫兹为单位。 那么,决定音乐和谐的因素又是什么呢?人类经过长期的研究,发现它决定于两音的频率之比。两音频率之比越简单,两音的感觉效果越纯净、愉快与和谐。 首先,最简单之比是2:1。例如,一个音的频率是160、7赫兹,那么,与它相邻的协和音的频率应该是2×260、7赫兹,这就是高八度音。而与频率为2×260、7赫兹的音和谐的次一个音是4×260、7赫兹。这样推导下去,我们可以得到下面一列和谐的音乐: 260、7,2×260、7,22×260、7…… 我们把它简记为C0,C1,C2,……,称为音名。可修改编辑
38精选资料 由于我们讨论的是音的比较,可暂时不管音的绝对高度(频率),因此又可将音乐简写为: C0C1C2C3……20212223…… 需要说明的是,在上面的音列中,不仅相邻的音是和谐的,而且C与C2,C与C3等等也都是和谐的。一般说来这些协和音频率之比是2M。(其中M是自然数) 第十二课:e和银行业 跟我们日常的事情有什么关系呢?事实上它在我们日常生活中,跟任何一个特定的整数一样,尽管人们并不总能察觉到它的出现。只有人知道是一个实际的数,如果问大家,可能多数人会说是英语字母表里的第5个字母。大家知道它是一个奇怪的数,这是我们通过数学课了解到的。只有少数人知道它是一个无理数和一个超越数。 可修改编辑
39精选资料 在今天的银行业里,是对银行家最有帮助的一个数。人们可能会问,像这样的数是怎样又以何种方式与银行业发生关系呢?要知道后者是专门跟“元”和“分”打交道的! 假如没有的发现,银行家要计算今天的利息就要花费极其大量的时间,无论是逐日逐日地算复利,还是持续地算复利都无法避免。有幸的是,的出现助了一臂之力。 的定义是作为数列的极限。我们通常写为。在利息计算中怎样借助于这个公式呢?实际的计算公式是:本利和,。 这里本金,年利率,一年之内计算利息的次数,存钱的年数。 上述公式可以变形为对于的公式。当人们投资1美元年利率为100%时,一年的本利和可达美元。开头可能会有人以为总计会是一个天文数字,但看了下面的估计后就会知道它接近于的值。可修改编辑
40精选资料 于是,我们看到:如果我们投资1美元,年利率为100%,那么收益决不会超过2.72美元。事实上的小数点后头22位数是=2.7182818284590452353602。 下一个问题是怎样对进行工作。最好先通过尝试来确定看。比如说我们从1000美元开始以年利8%存入银行,让我们看看当按一年期计算,然后按每半年期计算,再按每三个月期计算复利时会出现什么。 如果逐日计算复利,可用公式。这个公式如果用手算则要花好多时间,但今天用电子计算器和专门的计算机顷刻间便能得出结果。可修改编辑
41精选资料第十三课:几何就在你的身边初学几何时,你往往会感到这门学科枯燥乏味,有的知识似曾相识,似懂非懂;有的知识则似乎很“玄”,离我们很远!其实,日常生活中有几何,几何就在你的身边。当你骑自行车时,想过自行车的轮子为什么是圆形的,而不能是“鸡蛋形”的呢?因为“圆”形的特性可以使自行车平稳地前进;自行车的轮于有大有小,可供人们选择;两个轮子装的位置必须装得恰当,骑时会感到方便。这说明:物体的形状、大小、位置关系与日常生活有着紧密的联系,这也正是几何这门学科所要研究的。当你把一张长方形的纸裁成一个正方形时,你想过这里面有几何知识吗?图1图2图3 何中叫“比较线段的大小;把阴影部分裁去,可以看成在“长”上截取一段,使它等于“宽”,这就是几何中的“线段作图”;长方形的长与宽相等时,就是正方形,这更是几何中的一个重要结论。可修改编辑
42精选资料 如果把正方形折成相等的两部分,除了图2中所示的四种折法外,你还能想到其他的折法吗?不妨试试:过四条折痕相交的那个点“·”,任意地折一条线,看看这样把正方形分成的两部分也一样吗? 当你走进用砖块铺地的房间时,你注意到这些砖块的形状吗?有的是等边三角形的,有的是长方形或正方形的。 其实,任意形状的四边形砖块也能把地面拼得没有缝隙,请看图3。 这又将告诉我们几何中的一个重要结论(四边形的四个角的大小之和恰好等于360度),这个结论,与小学数学里学过的“三角形的三个角之和等于180度°又有着紧密的联系。 如果有兴趣的话,请你剪两块同样的直角三角形纸片,然后把两块纸片拼合成一个图形,你能拼出6种不同的图形吗?这里又包含了许许多多的几何知识。比如,当你拼成一个等腰三角形时,就不难知道:等腰三角形可以分成两个同样的直角三角形,中间的那条线位置很特殊,今后研究等腰三角形时常常要用到它!第十四课:巧用数学看现实在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢? 在数学活动组里,我就遇到了这样一道实际生活中的问题: 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元可修改编辑
43精选资料2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然。于是我们首先作了一个随机调查。把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢? 在实际问题中,甲商厚每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。 一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客。 二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。 所以由此可得: (l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多。 (2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是可修改编辑
44精选资料14000元,优惠较大。 (3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。 像这样的问题,我们在日常生活中随处可见。例如,有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同。为了争取更多的用户,两站分别推出优惠政策。甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年。你作为用户,应该选哪家好? 这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。 随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩。买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。 作为跨世纪的中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地适应社会的发展和需要。第十五课:商品调价中的数学问题若将某商品先涨价10%后再降价10%,所得的价格与原先的价格相比有无变化?不少同学会不加思索脱口而出:那还用问吗?肯定不变。果真如此吗? 比如设这种商品原价为100元,则涨价10%后价格为100+10=110元,再降价10%就是110-11=99元,可见比原先的价格便宜了。所以很多事情不能想当然贸然下结论,还是动笔算一算为好,才能做到心中有“数”。请研究下例: 某商品拟作两次调价,设p>q>0,有下列六种方案供选择: (A)选涨价p%,再降价q%; (B)可修改编辑
45精选资料选涨价q%,再降价p%; (C)选涨价%,再降价%; (D)选涨价%,再降价%; (E)选涨价%,再降价%; (F)选涨价%,再降价%; 若规定两次调价后该商品的价格最高的方案称为好方案。请判断其中哪一个是好方案? 分析 设某商品原价为1,采用方案(A)、(B)、(C)、(D)、(E)、(F)调价后的商品价格分别为a,b,c,d,e,f,则可修改编辑
46精选资料 所以,方案(A)是好方案。可修改编辑
47精选资料第十六课:煤商怎样进煤利润高日常生活中,有许多事情可采取多种方法来完成.哪种方法最好呢?比如:哪种方法最省时,或者最省钱等.如果开办加工厂,加工某种东西,又怎样获得利润最高?这都需要精打细算.比如开办一个煤厂吧!也就是把煤沫加工成蜂窝煤,它需要以下几个步骤:1.购买煤沫;2.掺好煤土;3.加工成品;4.销售.虽然仅有这么简单的四步,但也要仔细计算一下,然后再决定怎样使煤厂利润更高.然而,使煤厂利润更高,会受到多种因素的影响,这里我们重点研究购买哪种煤沫利润更高,但还要注意成品的销售情况。煤厂现在可以进购两种煤沫,一种好些,价钱当然贵了,可多掺黄土;另一种次些,价钱也就便宜,但掺黄土不能过多。煤厂进哪一种煤沫利润更高呢?这就要通过计算了,这里有三种方法。第一种,进购好煤沫,好煤沫的进价是每吨105元,掺上占煤沫的40%,掺水占煤土的8%,加工好的蜂窝煤售价是每吨88元,我们来计算一下进购好煤沫10吨的利润是多少.首先要得出10吨煤掺黄土和水后,可加工多少吨蜂窝煤,再算出总价,减去成本,求出利润.用10吨煤沫掺上40%的黄土共是14吨煤工,再掺上占煤土的8%的水1.12吨.共是15.12吨煤,加工后可卖88××可修改编辑
48精选资料15.12=1330.56元.再来算一下成本,每吨煤沫105元,10吨共1050元,黄土每吨18元,4吨共72元,水每吨0.6元,1.12吨共0.672元,这15.12吨煤的成本为1050+72+0.672=1122.67元.最后算一下利润,用总价减去成本,得1330.56-1122.672=207.888元,平均每吨煤获利润13.7元,这段话用式子表示为:{88×「10+10×40%1(10X40%)×8%]-(105X10+18X4+0.6XI.12)}÷15.12≈13.7元.第二种,进购次煤沫.次煤沫的进价是每吨85元,掺上占煤沫20%的土和占煤土8%的水,加工好的蜂窝煤的售价同样也是每吨88元.我们同样计算进购10吨次煤的利润是多少,方法与计算好煤利润相同.用10吨煤沫掺上占它的20%的黄土,共是12吨煤土,再掺上煤土的8%的水0.96吨,共是12.96吨煤,加工后可卖88×12.96=1140.48元.我们同样也算一下它的成本,每吨煤沫85元,10吨共850元,每吨黄土18元,2吨共36元,每吨水0.6元,0.96吨为0.576元,这12.96吨煤的成本为850+36+0。576=886.576元,它的利润为1140.48-886.576=253.904元,平均每吨煤的利润约为17.2元,这段话用武子表示为:{88×[10+10×2O%+(10+10×20%)×8%]-(85×IO+18×2+0.6×0.96)}÷12.96≈17.2元.第三种,进购好次两种煤沫,为了使煤质好些,所以好煤与坏煤的混合比例为2:1.掺上占煤的百分之多少呢?掺水又占煤土的百分之多少呢?让我们来计算一下.可修改编辑
49精选资料我们设掺次煤A吨,掺好煤2A吨,我们算出A吨次煤和2A吨好煤各掺多少土和水,算出土共是多少,占煤沫的多少;算出水共多少,又占煤土的百分之多少.好煤应掺它40%的土,所以2A吨好煤应掺2A×40%=80%A吨的土,也就是0.8A吨,这种煤土应掺它8%的水,所以(2A十0.8A)吨煤士应掺水(2a+0.8A)×8%=22.4%A吨,也就是0.224A吨.我们算完了2A吨好煤应掺的土和水,再来算一下A吨次煤应掺多少土和水.次煤应掺的土占它的20%,所以A吨次煤应掺A×20%=20%A的土,也就是0.2A吨,这种煤土应掺的水仍占它的8%,所以(A+20%A)吨的煤土应掺水(A+20%A)×8%=9.6%A吨,也就是0.096A吨.我们现在可以算出好、次两种煤共应掺黄土(0.8A+0.2A)=A吨,占3A吨煤的,再来算一下水占煤土的百分之几,这种掺法,水和煤土的百分之比与好次煤土所按的水一样,仍是8%.我们知道了混合煤土所掺土和水的百分比之后,就来算一下10吨混合煤加工成煤后,它的利润又是多少.方法与求好次煤利润的方法相同.10吨混合煤应是10×吨的次煤和10×吨的好煤混合成的,混合煤掺上它的的土共是可修改编辑
50精选资料吨,再掺上煤土8%的水吨,共是14.4吨,加工后可卖88×14.4=1267.7元,再算一下它的成本是吨好煤共700元,次煤共元,吨黄土共60元,吨水共元,这14.4吨煤的成本是元,利润为元,平均每吨煤获利润15.5元,这段话用式子表示为: 通过计算,我们很明显的可以看出,进购次煤利润会更高,但是还要注意一下销售这个问题,因为煤厂一个冬天就要卖几百上千吨的煤。所以仅看每吨煤的利润是不行的,还要看一看哪种煤卖得快、卖得多。我们分析一下三种煤的销售情况,好煤沫加工成的煤,煤质好,大家都愿意买这种煤,混合煤沫加工后的煤,因为好煤沫多一些,煤质就不如那两种煤了,火苗又小烧得时间又短,大家都不愿意买这种煤,如果厂家大量加工第三种煤,就卖不出去了。而另外两种煤,混合煤的利润高一些,且也很受大家欢迎,所以煤厂就大批加工这种煤。第十七课:把握或然,你会更聪明可修改编辑
51精选资料车与羊三扇门概率问题:一个游戏:有3扇关闭着的门,其中2扇门后面各有一只羊,另一扇门后面有一辆车。参与者:一个游戏者和一个主持人。主持人事先知道各扇门后的物品,而游戏者不知道。 游戏目的:游戏者选择到车。 分析: 游戏过程:1、游戏者随机选定一扇门;2、在不打开此扇门的情况下,主持人打开另一扇有羊的门。3、此时面对剩下2扇门,游戏者有一次更改上次选择的机会。 问题是:游戏者是否应该改变上次的选择,以使选到车的概率较大?答案:不改变选择,得到车的概率是1/3。 改变选择,得到车的概率是2/3。 解释: 1、若想不改变选择选到车: 第一步:概率问题: 若不改变选择,要选到车,则游戏者必须第一次就选中车。此时选中车的概率是1/3(原理详见中学数学课本)。可修改编辑
52精选资料 第二步:必然问题: 因为游戏者不会改变选择,所以,之后主持人的任何行为——开门也好关门也好敲门也好摔门也好——都与游戏者最初做出的选择无关。 最终:概率还是1/3。 2、若改变选择选到车: 第一步:概率问题: 若要通过改变选择选到车,则游戏者必须第一次选中的是羊。此时选中羊的概率是2/3(原理详见中学数学课本)。 第二步:必然问题: 之后,主持人会打开另一扇有羊的门。此时游戏者面对剩下的2扇门,改变选择的方式只有一种,就是选上次没有选的那扇门。(这之中没有几分之几概率的存在。打个简单比方,一个包子和一个馒头放在你面前,你第一步先拿了个包子在手上;然后第二步我叫你“换一个拿”,显然你只能选剩下的那个馒头。在第二步中,你并没有选择包子或馒头的机会。) 最终:选到车的概率还是2/3。 练习与思考题:1.(练习题)有可修改编辑
53精选资料3个囚犯A、B和C,被关在各自的狱室里,大家都知道他们中有一个人第二天将被处死,另外两个人则将被赦免。只有狱长知道谁会被处死。犯人A恳求看守帮忙:“请向狱长打听一下明天谁会被处死,然后把这个消息告诉我的朋友B和C中的一个人,让他知道明天是上他会被赦免。”看守同意了,并回来告诉A说他已经把赦免的消息告诉B了。那么,根据以上已知的信息,A被处死的几率有多大?(用数学方法解答这个问题,而不是扳着手指头数)。2.思考题:路人甲赢的概率假如现在有两张牌,一张正反面一样是底面(称为A),一张正面是joker反面是底面(称为B),现在两张牌放在一个袋子中,如果抽出来的牌是底面,那么翻面看是否为B,若为B则路人甲赢,若为A则路人乙赢;如果抽出来的牌是joker面,则放回重新抽。问:路人甲赢的概率。三类概率问题的处理方法:概率是高中数学的一个重要内容,也是高考中的一个难点。如何快捷地处理概率问题,是同学们最关心的问题之一,下面本文就这个问题展开讨论,介绍三类概率问题的处理办法。1、古典概率模型中的计数问题古典概率模型是指试验中所有可能出现的基本事件为有限个且每个基本事件出现的可能性相等的概率模型。只有满足条件才能采用古典概率模型的概率公式计算。可修改编辑
54精选资料例1一个盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意抽取3张,每张卡片被抽出的可能性相等,求:(1)抽出的3张卡片上最大的数字是4的概率;(2)抽出的3张卡片中有2张上的数字是3的概率;(3)抽出的3张卡片上的数字互不相同的概率。分析:分类求基本事件的个数:解:(1)设抽出的3张卡片上最大的数字是4的事件为A,则(2)设抽出的3张卡片中有2张卡片上的数字是3的事件为B,则(3)设其对立事件抽出的3张卡片上有2张的数字相同的事件为C,则,故所求的概率为2、相互独立事件和对立事件的模型的概率问题事件A与事件B相互独立是指事件A的发生不会影响事件B的发生,在计算概率时表现为。事件A与事件B对立是指事件A与事件B互斥,且为必然事件,在计算概率时表现为。例2可修改编辑
55精选资料某安全生产监督部门对5家小型煤矿进行安全检查(简称安检)。若安检不合格,则必须整改。若整改后经复查仍不合格,则强制关闭。设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算:(1)恰好有2家煤矿必须整改的概率;(2)某煤矿不被关闭的概率;(3)至少关闭1家煤矿的概率(结果精确到0.01)。分析:在处理复杂事件的概率问题时,通常有两种方法:一是将所求事件的概率转化为一些彼此互斥的事件的概率的和,这是由互斥事件概念的作用决定的;二是先求对立事件的概率,对立事件的概念为间接法求解问题提供了依据和基础,解:(1)每家煤矿必须整改的概率是,且每家煤矿是否整改是相互独立的,所以恰好有2家煤矿必须整改的概率是(2)某煤矿被关闭,即两次检查都不合格,被关闭的概率是,从而煤矿不被关闭的概率是0.90。(3)由(2)可知,每家煤矿不被关闭的概率是0.9,且彼此是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是3、几何概率模型的概率问题几何概率模型是指如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例的概率模型。在求几何概率模型的概率问题时,长度、面积或体积的计算是解题的关键。例3甲、乙两人约定在6时至7时之间在某地会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率。可修改编辑
56精选资料分析:这类题有两个难点,一是如何把实际问题转化为数学问题,二是计算表示事件发生的阴影部分的面积。解:以x轴和y轴分别表示甲、乙两人在6时至7时的一小时内到达约定地点的时间,则两人能够会面的条件是。在如图所示的平面直线坐标系下,(x,y)的所有可能结果是边长为60的正方形。设“两人能会面”为事件A,则A所有可能结果由图中阴影部分表示,从以上几种解法可以看出,解决概率问题的步骤可归纳为三步:第一步,确定事件的性质,例如古典概型、互斥事件、独立事件、独立重复试验,然后把所给问题归结为几类事件中的某一种。第二步,判断事件的运算、和事件、积事件,确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式。第三步,运用相应的公式计算。总之,正确的求解概率问题,必须要具备上述的方法步骤,能熟悉和掌握必要的“概率模型”,并会利用分类与讨论、转化与化归等数学思想。练习与思考题可修改编辑
57精选资料1:猎人在距100米处射击一野兔,其命中率为,如果第一次射击未中,则猎人进行第二次射击,但距离为150米,如果第二次未击中,则猎人进行第三次射击,并且在发射瞬间距离为200米,已知猎人命中概率与距离平方成反比,求猎人命中野兔的概率。2:设有n个人,每个人都等可能地被分配到N个房间中的任意一间去住(n≤N),求下列事件的概率(1)指定的n个房间各有一个人住(2)恰好有n个房间,其中各住一人3:已知某种高炮在它控制的区域内击中敌机制概率为0.2(1)假定有5门这种高炮控制某区域,求敌机进入该区域后被击中的概率。(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?4:基本系统是由四个整流二极管(串、并)联而成,已知每个二极管的可靠度为0.8(即正常工作),若要求系统的可靠度0.85,请你设计二极管的联结方式。第十八课:顺水推舟,克“敌”致胜可修改编辑
58精选资料——例谈反证法的应用反证法定义:中国成语中有一个“矛盾”的故事,有一个人同时贩卖矛与盾,他向买家吹嘘他的矛是“无坚不摧”的,盾呢,是刀枪不入的。于是,有人马上提议他“以子之矛,攻子之盾”来验证一下他的宣传是否可靠,于是这人当场弄得哑口无言。 此人采用“以子之矛,攻子之盾”的方法来反驳贩卖者的说法,收到奇效,这种方法实际上就是数学上所说的反证法。我们再来看一个例子:王戎小时候,爱和小朋友在路上玩耍。一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动。等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这是很著名的“道旁苦李”的故事。实质上王戎的论述,也正是运用了反证法,我们不妨把这则故事改编成象几何题目中的“已知、求证、证明”再和反证法的步骤进行对比,大家就明白了。事实:树上结满了李子 已知:树上有李小朋友问:为什么李苦 求证:李为苦李王戎:假如李子不苦 证明:假设李不苦可修改编辑
59精选资料则早被路人摘光 则早被路人摘光而树上结满李子 与已知树上有李矛盾所以一定是苦的 所以李为苦李至此,反证法的思路及步骤就一目了然了。反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。下面,我们来归纳反证法证明问题的一般步骤:第一步是“假设命题的结论不成立”,亦可理解成假命题结论的反面成立。但此时,要考虑结论的反面可能出现的情况。如果结论的反面只有一种情况,那么只须否定这种情况就足以证明原结论是正确的;如果结论的反面不止一种情况,那么必须把各种可能情况全部列举出来,并且一一加以否定后,才能肯定原结论是正确的;第二步“从这个假设出发,经过推理论证,得出矛盾”其中的矛盾,可以是和已知矛盾,也可以和定义、公理、定理、性质等矛盾,这样都足以说明假设错误,原命题正确。可修改编辑
60精选资料第三步由矛盾判定假设不正确,从而肯定命题的结论正确。我们先来看两个短时间简单的例子:例1.求证:在一个三角形中,不能有两个角是钝角已知:∠A,∠B,∠C是三角形ABC的三个内角。求证:∠A,∠B,∠C中不能有两个钝角。证明:假如∠A,∠B,∠C中有两个钝角,不妨设∠A>900,º且∠B>900,则∠A+∠B+∠C>1800。这与三角形和定理矛盾。故∠A,∠B均大于900不成立。所以,一个三角形不可能有两个钝角。例2、用反证法证明:在三角形的内角中,至少有一个角大于或等于60°.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个角大于或等于60°.证明:假设所求证的结论不成立,即∠A<60°,∠B<60°,∠C<60°则∠A+∠B+∠C<180°.可修改编辑
61精选资料这与三角形三个内角的和等于180°相矛盾.所以假设不成立,所求证的结论成立.试一试:用反证法证明下述命题:某班有49位学生,证明:至少有5位学生的生日在同一个月.已知:如图,直线a,b被直线c所截,∠1≠∠2求证:a∥b通过上节课的学习,大家对反证法定义和证明方法有了初步的了解,我们再来回顾反证法证题的具体步骤:①反设:假设命题的结论不成立,即假设结论的反面成立;②归谬:从假设出发,经过推理论证,得出矛盾;③结论:由矛盾判定假设不正确,从而肯定命题的结论正确.例1、已知a>0,b>0,且a+b>2,求证:中至少有一个小于2。证明:假设都不小于2,即≥2且≥2∵ a>0,b>0∴1+b≥2a,1+a≥2b∴ 2+a+b≥2a+2b可修改编辑
62精选资料∴ a+b≤2 这与已知a+b>2矛盾所以,假设不成立,故中至少有一个小于2。已知a、b、c∈R,a+b+c>0,ab+bc+ca>0,abc>0,求证:a>0,b>0,c>0证明:不妨设a≤0,∵ abc>0∴ a<0,bc<0又∵ ab+bc+ca>0∴ab+ca>-bc>0∴a(b+c)>0∵a<0∴b+c<0∴ a+b+c<0这与已知a+b+c>0矛盾,所以a>0同理可证,b>0,c>0反证法一般常用于有下述特点的命题的证明:①结论本身以否定形式出现;②结论是“至少”、“至多”、“唯一”、“都是”等形式;③结论涉及“存在或不存在”,“有限或无限”等形式;可修改编辑
63精选资料④直接证法比较困难的命题例2.给定实数a,a≠0且a≠1,设函数y=(其中x∈R且x≠),证明:①.经过这个函数图像上任意两个不同点的直线不平行于x轴;②.这个函数的图像关于直线y=x成轴对称图像。(88年全国理)。【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。【证明】①设M(x,y)、M(x,y)是函数图像上任意两点,且x≠x,假设直线MM平行于x轴,则必有y=y,即=,整理得a(x-x)=x-x∵x≠x∴a=1,这与已知“a≠1”矛盾,因此假设不对,即直线MM不平行于x轴。②由y=得axy-y=x-1,即(ay-1)x=y-1,所以x=,即原函数y=的反函数为y=,图像一致。由互为反函数的两个图像关于直线y=x对称可以得到,函数y=的图像关于直线y=x成轴对称图像。可修改编辑
64精选资料【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的情况下,容易得到一些性质。第②问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练。反证法现实意义例:小华睡觉前,地上是干的,早晨起来,看见地上全湿了。小华对婷婷说:“昨天晚上下雨了。”您能对小华的判断说出理由吗?假设昨天晚上没有下雨,那么地上应是干的,这与早晨地上全湿了相矛盾,所以说昨晚下雨是正确的。现在让我们看以下例子,进一步体会反证法思想在谈话技巧上的应用。实例1:有一天,牛头马面把一个高头大马的鬼带进阎王宝殿。阎罗王把惊堂木一拍:“这厮好无礼,见到本王也不会下跪叩头。拉下,打一百棒。”“大王,请原谅。我是洋鬼子,不知你们东方地狱的礼节请原谅。”“好!就原谅你一次,你是谁?”“我是Superman。”站在阎罗王旁边的师爷马上俯身对阎王解释:“Superman是超人。”可修改编辑
65精选资料“好大的口气,苏本梅先生你怎么会是超人?”Superman以傲慢的口气说:“当然是超人,我能做人类所不能做的事,我是万能,世上没有一件事我是不能做的。”“好!那么你举一件事是你做不出的。”Superman当场呆在那里。如果他能举出一件事,这就证明他不是万能。如果他不能举出这样的事,就证明在世上他不能做这件事——“举出他不能做的事”,因此也证明他不是万能。“是嘛!你根本就不是超人,我就不相信存在超人的东西。你呀在人间以前还做些好事,可是现在西方的连环图把你弄成巧言令色,专门吊女人膀子的家伙,你这种行径败坏许多青年,我看不出你有什么英雄气色。好!判你进入第十八层地狱,等到你认清你的错误,再让你转世。”这里阎王就是“以Superman之予,攻Superman之盾”了。实例2:南方某风水先生到北方看风水,恰逢天降大雪。乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。”实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水可修改编辑
66精选资料先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的茺唐结论。风水先生当然不会承认这个事实了。那么,显然,他说的就是谬论了。这就是反证法的威力,一个原本非常复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。我来当警察:警察局里有5名嫌疑犯,他们分别做了如下口供:A说:这里有1个人说谎.B说:这里有2个人说谎.C说:这里有3个人说谎.D说:这里有4个人说谎.E说:这里有5个人说谎聪明的同学们,假如你是警察,你觉得谁说了真话?你会释放谁?请与大家分享你的判断!第十九课:抽屉原理和六人集会问题“任意367个人中,必有生日相同的人。”“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”可修改编辑
67精选资料“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ......大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。抽屉原理的一种更一般的表述为:“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。可修改编辑
68精选资料如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目:“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出:在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。可修改编辑
69精选资料六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。第二十课:数独游戏与数学数独是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。拼图是九宫格(即3格宽×3格高)的正方形状,每一格又细分为一个九宫格。在每一个小九宫格中,分别填上1至9的数字,让整个大九宫格每一列、每一行的数字都不重复。数独游戏的一般方法1.直观法,顾名思义,就是通过对谜题中现有的数字进行分析,继而逐一确定剩余空格中的数字的方法。它是最常用并且相对简单的方法,对于比较容易的谜题,可以快速求解并收到良好的效果。但是遇到比较复杂的题目,直观法可修改编辑
70精选资料就稍显力不从心了。数学概率的基本应用.是初学者的常用方法..2.候选数法(CandidatesEliminationTechniques),是先在所有空白的单元格中写上所有可能出现的数字,然后通过一些常用的算法来删减候选数,最终获得唯一确定的候选数。候选数法(CandidatesEliminationTechniques)被广泛使用在电脑生成谜题及解题的实践中,这不仅因为它编程相对容易,而且它的算法也在不断增加,使它的解题效率和能力都得以大力提高。是高中学过的概率统计问题,写出所有可能结果,根据条件筛选.但是耗时较长,解题步骤相对较多,较麻烦.可修改编辑
71精选资料二.数独游戏的技巧1.唯一数法:如果我们发现某个格子中只有一个可用候选数,那么这个格子必然是这个数字,这就是唯一数法2.隐含唯一数法:如果我们发现某一行某一列或某个九宫有一个候选数只出现在一个格子里面,那么这个格子必然是这个数字,这就是隐含唯一数法3.数对法:如果我们发现某一行某一列或某个九宫有两个格子只使用了两个候选数,那么这两个格子必然正好是这两个数字,那么在这个单元(行,列,或九宫)中,其它格子不会出现这两个候选数,这就是数对法4.三链数法:如果我们发现某一行某一列或某个九宫有三个格子只使用了三个候选数,那么这三个格子必然正好是这三个数字,那么在这个单元(行,列,或九宫)中,其它格子不会出现这三个候选数,这就是三链数法,5.四链数法:如果我们发现某一行某一列或某个九宫有四个格子只使用了四个候选数,那么这四个格子必然正好是这四个数字,那么在这个单元(行,列,或九宫)中,其它格子不会出现这四个候选数,这就是四链数法可修改编辑
72精选资料6.隐含数对法:如果我们发现某一行某一列或某个九宫中有两个候选数只出现在两个格子中,那么这两个格子必然正好是这两个数字,那么这两格子中其他候选数可以删除,这就是隐含数对法7.隐含三链数法:如果我们发现某一行某一列或某个九宫中有三个候选数只出现在三个格子中,那么这三个格子必然正好是这三个数字,那么这三格子中其他候选数可以删除,这就是隐含三链数法8.区域删减法:如果我们发现某一候选数在某一单元(行,列,九宫)中完全处在同另外一个单元的交集中,那么在另外一个单元中,不在交集中的这个候选数必然可以删除9.矩形法:如果某个候选数在某两行(列)中只出现在某两行(列)中,那么在那两行(列)中,不在那两列(行)的这个候选数都可以删除10.关连数删减法:通过找到一串强关联数据来得出矛盾来删除候选数.第二十一课:集合与生活1、集合概述可修改编辑
73精选资料集合论是德国数学家康托(cantor,1845~1918)在十九世纪七十年代开创的,后来,集合论的思想渗透到数学的各个分支,在现代数学中,越来越广泛而深入的用到集合的概念,它已成为数学的逻辑基础。然而,究竟什么是集合?当初康托所指的集合无非是集体的意思,他是把集合当作一个日常用语而不是一个数学用语来使用。但是,人们不久发现,他的含糊的定义引起了难以克服的混乱,于是大家试图用公理系统来代替集合的定义。这个工作可以说是自1908年策莫洛(zeremelo,1871~1953)提出第一个公理系统时开始的。公理系统显然比传统的定义精密得多,但集合论的公理系统至今还不完备。因此目前集合论还不能认为是圆满的。2、罗素怪异与理发师悖论一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。 因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。但是,招牌上说明他不给这类人理发,因此他不能自己理。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的。这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。可修改编辑
74精选资料1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。到19世纪末,全部数学几乎都建立在集合论的基础之上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素提出的理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的革命。3、集合运算:例1::几何图形性质运算。例2::数轴上数的运算。例3:解方程组:即两直线交点坐标:例4:解不等式组:4、差集和补集的运算:A-B=由定义显然:A-BB-A例5:A=B=C=D=可修改编辑
75精选资料则有下列运算:A-B=C-B=D-B=5、基数概念:设集A是一个有限集,则A里不同元素的个数叫做A的基数,记为n(A),设A和B是有限集,他们基数分别为n(A),n(B)表示,则有下面关系:n(A=n(A)+n(B)-n(A,n(AB)=n(A)+n(B)-n(AB)例6:某班学生50人,每人至少懂得一种外语(英语或日语),其中懂得英语的有40人,懂得日语的20人,问懂得英语和日语两种语言有多少人。解:设A={班上懂得英语的学生}B={班上懂得日语的学生}AB={班上的学生}AB={班上既懂得英语又懂日语的学生}n(AB)=n(A)+n(B)-n(AB)=40+20-50=10例7:某校组织文娱活动,参加音乐组有35人,参加舞蹈有34人,参加戏剧组有29人,其中有12人同时参加音乐组和舞蹈组,有14人同时参加舞蹈组和戏剧组,13人同时参加戏剧组和音乐组,且有5人同时参加三组,问参加文娱活动的人数有多少人?解:A={参加音乐组的学生}B={参加舞蹈组的学生}可修改编辑
76精选资料C={参加戏剧组的学生}n(A)=35n(B)=34n(C)=29n(AB)=12n(BC)=14n(CA)=13n(ABC)=5n(ABC)=35+34+29-12-13-14+5=64思考:现有2000盏电灯,编号为1—2000,每个灯的开关都为乒乓键,若第一次拉一下编号为2的倍数的灯、第二次再拉一下编号为3的倍数的灯、最后拉一下编号为5的倍数的灯,问操作结束后,有几盏灯亮着,几盏灯灭着?第二十二课:生活中的立体几何折叠问题巧解决:图1 一名纸盒制造商要求设计师设计一种适当的纸板,使得该纸板折叠以后可隔成两个立方体,且这两个正方体上方各有一个盖子。 有很多种设计可符合此要求,但是最后制造商决定采用如上图所示的“十”字形纸板。可修改编辑
77精选资料 根据设计师的说法,只要将纸板裁两刀,就可折叠出所需要的盒子,到底该从何着手? 解答与分析:顺着图中的粗线将纸盒剪开,再沿着虚线处将A与B两块粘合,形成盒子的中央分隔部位,并使两片盖子可以以此为底轴任意开关。接下来便可很轻易地折出题目所要求的盒子。 解题的关键在于两片盖子的底轴位于同一处。当这个关键问题解决之后,要找出符合要求的设计并不难。在大部分的设计中,此答案是最理想的。图2辛赛的奥妙: 1982年,有一种称为“辛赛的奥妙”(Shinsei可修改编辑
78精选资料Mystery)的数学玩具上市,它是由两个相同的部分组成的,每一部分又是由8个互相连接的多面体构成。它可以组合成许多奇妙的形状,其中包括立方体和12个顶点的星状体。这个模型的基础是半个立方体(如图1),可以把它看成是3个角锥体(6个这样的角锥体构成立方体),向内折使其顶点会合于立方体的中心。这个半立方体的展开图见图2。展开图中有一个三角形的面出现两次,可以粘合在一起,以增加强度。“辛赛的奥妙”每一半都有8个这样的半立方体,彼此以巧妙的方式连接在一起。它可以叠成如图3所示有12个顶点的星状体。为了说明连接的方法,我们可以把星状体水平分成两半,再把相同的两半并排在一起,用比较平面的方式表现。可修改编辑
79精选资料图4 图4是由上方俯视的示意图,A、B、C对应于立方体展开图(图2)的标示。将8个半立方体的底面DEF按图所示置于平面上,并用胶带纸粘贴。现在你也拥有一个奇妙的模型了,任何把玩它的人都会觉得趣味盎然。用不同颜色的纸板再做一个相同的模型,你会发现它们可以组合在一起,而且可以使其中一个消失在另一个之中。三维立体问题:我们通常都可以从二维的图画中看出所要表现的三维物体,识图与绘图的训练,可以培养我们的空间观念。然而,就像这里所示的一些图画,二维的图画也可以在视觉上创造出不可能的事物。在第一张图中,到底是2根还是3根木栓?阶梯是否可以自己相连?你是否能用3根木条做出图上的三角形?可修改编辑
80精选资料关于视觉的认知,可能心理学家要比数学家研究得更多一些,但数学家也经常使用二维图形作为思考空间问题的参考,因此必须对二维图形的缺点有所了解。 荷兰艺术家埃舍尔(M.C.Escher)在绘画上运用视错觉的原理,创造出许多不可能的世界。你可以参阅《埃舍尔绘画作品》(TheGraphicWorkofM.C.Escher)一书中的一些图画。注意并收集那些会欺骗你眼睛的图画。第二十三课:生活中的排列组合一、要赛多少盘:举行中国象棋比赛,共有12人报名参加比赛。根据比赛规则,每个人都要与其他人各赛一盘,那么这次象棋比赛一共要赛多少盘? 分析与解:一共要赛66盘。可修改编辑
81精选资料 要想得出正确答案,我们可以从简单的想起,看看有什么规律。 假如2个人(A、B)参赛,那只赛1盘就可以了;假如3个人(A、B、C)参赛,那么A—B、A—C、B—C要赛3盘;假如4个人参赛,要赛6盘,…… 于是我们可以发现: 2人参赛,要赛1盘,即1; 3人参赛,要赛3盘,即1+2; 4个参赛,要赛6盘,即1+2+3; 5人参赛,要赛10盘,即1+2+3+4; …… 那么,12人参赛就要赛1+2+3+……+11=66盘。我们还可以这样想:这12个人,每个人都要与另外11个人各赛1盘,共11×12=132(盘),但计算这总盘数时把每人的参赛盘数都重复算了一次,(如A—B赛一盘,B—A又算了一盘),所以实际一共要赛132÷2=66(盘)。获第三名的得几分可修改编辑
82精选资料 A、B、C、D、E五名学生参加乒乓球比赛,每两个人都要赛一盘,并且只赛一盘。规定胜者得2分,负者得0分。现在知道比赛结果是:A和B并列第一名,C是第三名,D和E并列第四名。那么C得几分? 分析与解:获第三名的学生C得4分。 因为每盘得分不是2分就是0分,所以每个人的得分一定是偶数,根据比赛规则,五个学生一共要赛10盘,每盘胜者得2分,共得了20分。每名学生只赛4盘,最多得8分。 我们知道,并列第一名的两个学生不能都得8分,因为他们两人之间比赛的负者最多只能得6分,由此可知,并列第一的两个学生每人最多各得6分。 同样道理,并列第四的两个学生也不可能都得0分,因此他们两人最少各得2分。这样,我们可得出获第三名的学生C不可能得6分或2分,只能得4分。二、西蒙斯趣味游戏:这是由西蒙斯(GustavusSimmons)所设计的两个人玩的简单游戏(因此而命名)。 游戏首先由圆内六边形的顶点A,B,C,D,E,F开始,玩的人轮流使用不同颜色的笔以直线连接任意两个顶点。 总共只有15条可能的直线,所以这个游戏必定可在有限的时间内结束。游戏的规则是要避免所连的直线(相同颜色者)形成三角形,否则就输了。在两种不同颜色的笔把15条线都画完之前,必定会形成一个同颜色的三角形,所以一定能分出胜负。可修改编辑
83精选资料图1 图示为一场比赛的结果,图中的数字表示画线的顺序,实线为某甲所画的直线,虚线则为某乙画的直线。如图,现在轮到乙画线,而且只剩下两条直线可画,若连接DF会形成三角形DAF,而连接FE则形成另一三角形EAF,所以这一局乙是输定了。图2三、五个王后的游戏: 这是两人玩的游戏。在棋盘上随意摆几个王后,例如图中有5个王后。两人轮流移动王后。移动的方式如下:可修改编辑
84精选资料 (1)取走王后。 (2)以下列方式移动王后,步数不限。 ①向下移动; ②向左移动; ③沿对角线向左下方移动。 如果移动后,两个王后位于同一方格,则两者都会被取走。取走最后一个王后的人赢。 解答与分析 这个游戏在有限的移动步数之后一定会结束,因为王后不能倒退,而且每次移动之后活动的空间就更小。这不是个容易分析的游戏。 这个游戏也可以改成最后取走王后的人输。四、平分苹果酒:一位农夫和他的朋友合买了一桶8加仑装的苹果酒(1加仑=4.5461升)。他们想平分这些苹果酒,但却只有一个5加仑和一个3加仑的容器。他们该如何平分? 解答与分析: 将3个容器依其容量简记为8、5、3。可修改编辑
85精选资料 由8倒满5。由5倒满3,5中还留有2加仑酒。将3倒入8。 由5倒2加仑酒入3。由8倒满5。 由5倒入3,直到3满,此时5中还留有4加仑酒。 将3倒入8,这样8中也有4加仑酒。第二十四课:算法妙用一.爱因斯坦编的问题:很多科学家都喜欢用一些有趣的数学问题来考察别人的机敏和逻辑推理能力。这里有一道著名物理学家爱因斯坦编的问题: 在你面前有一条长长的阶梯。如果你每步跨2阶,那么最后剩下1阶;如果你每步跨3阶,那么最后剩2阶;如果你每步跨5阶,那么最后剩4阶;如果你每步跨6阶,那么最后剩5阶;只有当你每步跨7阶时,最后才正好走完,一阶也不剩。 请你算一算,这条阶梯到底有多少阶? 分析与解:分析能力较强的同学可以看出,所求的阶梯数应比2、3、5、6的公倍数(即30的倍数)小1,并且是7的倍数。因此只需从29、59、89、119、……中找7的倍数就可以了。很快可以得到答案为119阶。可修改编辑
86精选资料二.丢番图的趣题:今有四数,取其每三个而相加,则其和分别为22、24、27和20。求这四个数各是多少? 分析与解:如果设其中某个数为x,则其他三个数很难用x的式子表示出来。丢番图的作法十分巧妙,他设四个数之和为x,则这四个数分别为x-22,x-24,x-27,x-20。列方程 (x-22)+(x-24)+(x-27)+(x-20)=x 解得x=31 31-22=9,31-24=7, 31-27=4,31-20=11,即这四个数分别为9、7、4、11。三.一本书的页数:我们知道印刷厂的排版工人在排版时,一个数字要用一个铅字。例如15,就要用2个铅字;158,就要用3个铅字。现在知道有一本书在排版时,光是排出所有的页数就用了6869个铅字,你知道这本书共有多少页吗?(封面、封底、扉页不算在内) 分析与解:仔细分析一下,页数可分为一位数、两位数、三位数、……。 一位数有9个,使用1×9=9个铅字;可修改编辑
87精选资料 两位数有(99-9)个,使用2×90=180个铅字; 三位数有(999-90-9)个,使用3×900=2700个铅字; 依此类推。 我们再判断一下这本书的页数用到了几位数。因为从1到999共需用9+2×90+3×900=2889个铅字,从1到9999共需用9+2×90+3×900+4×9000=38889个铅字,而2889<6869<38889,所以这本书的页数用到四位数。 排满三位数的页数共用了2889个铅字,排四位数使用的铅字应有6869-2889=3980(个),那么四位数的页数共有3980÷4=995(页)。因此这本书共有999+995=1994(页)。四、苏步青教授解过的题我国著名数学家苏步青教授,有一次到德国去,遇到一位有名的数学家,在电车上出了一道题目让苏教授做。这道题目是: 甲、乙两人同时从两地出发,相向而行,距离是50千米。甲每小时走3米,乙每小时走2千米,甲带着一只狗,狗每小时跑5千米,这只狗同甲一起出发,碰到乙的时候它就掉头往甲这边跑,碰到甲时又往乙这边跑,碰到乙时再往甲这边跑……,直到甲、乙二人相遇为止。问这只狗一共跑了多少路? 苏步青教授略加思索,未等下电车,就把正确答案告诉了这位德国数学家。可修改编辑
88精选资料 请你也来解答这道数学题,题目虽不太难,但要认真思考,才能找到解题的“窍门”。 分析与解:这个问题看起来很复杂,其实却是出人意料的简便。因为每小时甲走3千米,乙走2千米,所以甲乙二人相遇共走了10小时,这表明狗也跑了10小时,因此狗一共跑了50千米。第二十五课:世界数学难题欣赏——四色猜想 平面内至多可以有四个点构成每两个点两两连通且连线不相交。可用符号表示:K(n),n=、<4。四色原理简介:可修改编辑
89精选资料这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。着色时要使得没有两个相邻(即有公共边界线段)的区域有相同的颜色。1852年英国的格思里推测:四种颜色是充分必要的。1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速电子计算机运算了1200个小时,才证明了格思里的推测。20世纪80-90年代曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。四色问题的解决在数学研究方法上的突破,开辟了机器证明的美好前景。四色定理的诞生过程:世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里(FrancisGuthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。可修改编辑
90精选资料1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。可修改编辑
91精选资料肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,在J.Koch的算法的支持下,美国数学家阿佩尔(KennethAppel)与哈肯(WolfgangHaken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界,当时中国科学家也有在研究这原理。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。可修改编辑
92精选资料四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!” 由四色猜想产生了德·摩尔根地图四色定理,地球区划图的奥秘——四色定理,宇宙万物图的奥秘——十六色定理,宏伟的原创性科学发现和发明——万有图形色数。第二十六课:世界数学难题欣赏——哥尼斯堡七桥问题请你做下面的游戏:一笔画出如图1的图形来。规则:笔不离开纸面,每根线都只能画一次。这就是古老的民间游戏——一笔画。你能画出来吗?如果你画出来了,那么请你再看图2能不能一笔画出来?可修改编辑
93精选资料虽然你动了脑筋,但我相信你肯定不能一笔画出来!为什么我的语气这么肯定?我们来分析一下图2。我们把图2看成是由点和线组成的一种集合。图里直线的交点叫做顶点,连结顶点的线叫做边。这个图是联通的,即任何二个顶点之间都有边。很显然,图中的顶点有两类:一类是有偶数条边联它的,另一类是有奇数条边联它的。一个顶点如果有偶数条边联它的,这点就称为偶点;如果有奇数条边联它的,就称它为奇点。我们知道,能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。图2有六个奇点,四个偶点,当然不能一笔画出来了。为什么能一笔画的图形只有上述两类呢?有关这个问题的讨论,要追溯到二百年前的一个著名问题:哥尼斯堡七桥问题。十八世纪东普鲁士哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河,它有两个支流,在城市中心汇成大河,中间是岛区,河上有7座桥,将河中的两个岛和河岸连结,如图3所示。由于岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只许通过一次,最后仍回到起始地点。这就是七桥问题,一个著名的图论问题。可修改编辑
94精选资料图3这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。因此,一群大学生就写信给当时年仅20岁的大数学家欧拉。欧拉从千百人次的失败,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥,并很快证明了这样的猜想是正确的。欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成4个点,7座桥表示成7条连接这4个点的线,如图4所示。图4图5于是“七桥问题”就等价于图5中所画图形的一笔画问题了。欧拉注意到,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。图上其它的点是“过路点”——画的时候要经过它。现在看“过路点”具有什么性质。它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出,如果有进无出,它就是终点,也不可能有出无进,如果有出无进,它就是起点。因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点。可修改编辑
95精选资料如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须是偶点,这样图上全体点都是偶点。如果起点和终点不是同一点,那么它们必须是奇点,因此这个图最多只能有二个奇点。现在对照七桥问题的图,所有的顶点都是奇点,共有四个,所以这个图肯定不能一笔画成。欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子。事实上,中国民间很早就流传着这种一笔画的游戏,从长期实践的经验,人们知道如果图的点全部是偶点,可以任意选择一个点做起点,一笔画成。如果是有二个奇点的图形,那么就选一个奇点做起点以顺利的一笔画完。可惜的是,古时候没有人对它重视,没有数学家对它进行经验总结,以及加以研究。今天学习欧拉的成果不应是单纯把它作为数学游戏,重要的是应该知道他怎样把一个实际问题抽象成数学问题。研究数学问题不应该为“抽象而抽象”,抽象的目的是为了更好的、更有效的解决实际产生的问题,欧拉对“七桥问题”的研究就是值得我们学习的一个样板。第二十七课:世界数学难题欣赏——费马大定理费马大定理简介:可修改编辑
96精选资料当整数n>2时,关于x,y,z的不定方程 x^n+y^n=z^n.((x,y)=(x,z)=(y,z)=1[n是一个奇素数]x>0,y>0,z>0)无整数解。这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁•怀尔斯(AndrewWiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文:"Cuiusreidemonstrationemmirabilemsanedetexi.Hancmarginisexiguitasnoncaperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。可修改编辑
97精选资料1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:GerdFaltings证明了Mordell猜测,从而得出当n>2时(n为整数),只存在有限组互质的a,b,c使得a^n+b^n=c*n。1986年,GerhardFrey提出了“ε-猜想”:若存在a,b,c使得a^n+b^n=c^n,即如果费马大定理是错的,则椭圆曲线y^2=x(x-a^n)(x+b^n)会是谷山-志村猜想的一个反例。Frey的猜想随即被KennethRibet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:AnnalsofMathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。可修改编辑
98精选资料 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧妙工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。 5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。 6:勒贝格提交了一个证明,但因有漏洞,被否决。 7:希尔伯特也研究过,但没进展。 8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。 9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。 10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题:假定“费马大定理”可修改编辑
99精选资料不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。 11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。 12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”。 13:1991年对费马大定理指数n<1,000,000费马大定理已被证明,但对指数n>1,000,000没有被证明.已成为世界数学难题。1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n=5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……可修改编辑
100精选资料19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。”在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。可修改编辑
101精选资料1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。1993年6月,英国数学家、美国普林斯顿大学教授安德鲁•怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。但专家对他的证明审察发现有漏洞,于是,怀尔斯又经过了一年多的拼搏,于1994年9月20日上午11时彻底圆满证明了“费马大定理”。第二十八课:世界数学难题欣赏——哥德巴赫猜想在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年可修改编辑
102精选资料陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。猜想简介:这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(GoldbachConjecture)。今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。从关于偶数的哥德巴赫猜想,可推出: 任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”,数学家认为弱哥德巴赫猜想已基本解决。研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。1、殆素数可修改编辑
103精选资料殆素数就是素因子个数不多的正整数。现设N是偶数,虽然现在不能证明N是两个素数之和,但是可以证明它能够写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。现在用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓的筛法得到的[1]。 “a+b”问题的推进 1920年,挪威的布朗证明了“9+9”。 1924年,德国的拉特马赫证明了“7+7”。 1932年,英国的埃斯特曼证明了“6+6”。 1937年,意大利的蕾西先后证明了“5+7”,“4+9”,“3+15”和“2+366”。 1938年,苏联的布赫夕太勃证明了“5+5”。 1940年,苏联的布赫夕太勃证明了“4+4”。 1956年,中国的王元证明了“3+4”。稍后证明了“3+3”和“2+3”。 1948年,匈牙利的瑞尼证明了“1+c”,其中c是一很大的自然数。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1+5”,中国的王元证明了“1+4”。 可修改编辑
104精选资料 1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1+3”。 1966年,中国的陈景润证明了“1+2”。2、例外集合在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。x之前所有例外偶数的个数记为E(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德巴赫猜想就等价于E(x)永远等于1。当然,直到现在还不能证明E(x)=1;但是能够证明E(x)远比x小。在x前面的偶数个数大概是x/2;如果当x趋于无穷大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。这就是例外集合的思路。维诺格拉多夫的三素数定理发表于1937年。第二年,在例外集合这一途径上,就同时出现了四个证明,其中包括华罗庚先生的著名定理。业余搞哥德巴赫猜想的人中不乏有人声称“证明”了哥德巴赫猜想在概率意义下是对的。实际上他们就是“证明”了例外偶数是零密度。这个结论华老早在60年前就真正证明出来了。3、三素数定理可修改编辑
105精选资料如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。我们可以把这个问题反过来思考。已知奇数N可以表成三个素数之和,假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。这个思想就促使潘承洞先生在1959年,即他25岁时,研究有一个小素变数的三素数定理。这个小素变数不超过N的θ次方。我们的目标是要证明θ可以取0,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。潘承洞先生首先证明θ可取1/4。后来的很长一段时间内,这方面的工作一直没有进展,直到1995年展涛教授把潘老师的定理推进到7/120。这个数已经比较小了,但是仍然大于0。4、几乎哥德巴赫问题1953年,林尼克发表了一篇长达70页的论文。在文中,他率先研究了几乎哥德巴赫问题,证明了,存在一个固定的非负整数k,使得任何大偶数都能写成两个素数与k个2的方幂之和。这个定理,看起来好像丑化了哥德巴赫猜想,实际上它是非常深刻的。我们注意,能写成k个2的方幂之和的整数构成一个非常稀疏的集合;事实上,对任意取定的x,x前面这种整数的个数不会超过logx的k次方。因此,林尼克定理指出,虽然我们还不能证明哥德巴赫猜想,但是我们能在整数集合中找到一个非常稀疏的子集,每次从这个稀疏子集里面拿一个元素贴到这两个素数的表达式中去,这个表达式就成立。这里的k用来衡量几乎哥德巴赫问题向哥德巴赫猜想逼近的程度,数值较小的k表示更好的逼近度。显然,如果k等于0,几乎哥德巴赫问题中2的方幂就不再出现,从而,林尼克的定理就是哥德巴赫猜想。可修改编辑
106精选资料林尼克1953年的论文并没有具体定出k的可容许数值,此后四十多年间,人们还是不知道一个多大的k才能使林尼克定理成立。但是按照林尼克的论证,这个k应该很大。1999年,作者与廖明哲及王天泽两位教授合作,首次定出k的可容许值54000。这第一个可容许值后来被不断改进。其中有两个结果必须提到,即李红泽、王天泽独立地得到k=2000。目前最好的结果k=13是英国数学家希思-布朗(D.R.Heath-Brown)和德国数学家普赫塔(Puchta)合作取得的,这是一个很大的突破。可修改编辑
107精选资料THANKS!!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考可修改编辑
此文档下载收益归作者所有