10【训练1】(多选)在两个物体碰撞前后,下列说法中可以成立的是()A.作用后的总动能比作用前小,但总动量守恒B.作用前后总动量均为零,但总动能守恒C.作用前后总动能为零,而总动量不为零D.作用前后总动量守恒,而系统内各物体的动量增量的总和不为零AB解析选项A为非弹性碰撞,说法成立;选项B为弹性碰撞,说法成立;总动能为零时,其总动量一定为零,故选项C说法不成立;总动量守恒,则系统内各物体动量的增量的总和一定为零,选项D说法不成立。
11知识点二 弹性碰撞的实例分析如图所示,光滑水平面上并排静止着小球2、3、4,小球1以速度v0射来,已知四个小球完全相同,小球间发生弹性碰撞,则碰撞后各小球的运动情况如何?提示小球1与小球2碰撞后交换速度,小球2与小球3碰撞后交换速度,小球3与小球4碰撞后交换速度,最终小球1、2、3静止,小球4以速度v0运动。
12❶正碰:碰撞前后两球的速度与两球心的连线在______________的碰撞,这种碰撞称为正碰,也叫作对心碰撞或一维碰撞。❷实例分析(1)推导在光滑水平面上质量为m1的小球以速度v1与质量为m2的静止小球发生弹性正碰,如图所示。同一条直线上
13碰撞过程中,动量守恒,总动能没有损失,得碰后两个物体的速度分别为
14(2)结论①若m1=m2,则有v1′=____,v2′=______,即碰撞后两球速度互换。②若m1>m2,v1′和v2′都是正值,表示v1′和v2′都与v1方向相同。若m1≫m2,这时有m1-m2≈m1,m1+m2≈m1,得v1′=v1,v2′=________,表示第一个球的速度几乎不变,第二个球以2v1的速度被撞出去。③若m1<m2,v1′为负值,表示v1′与v1方向______,第一个球被弹回。0v12v1相反
15【例2】如图所示,光滑平台上有两个刚性小球A和B,质量分别为2m和3m,小球A以速度v0向右运动并与静止的小球B发生碰撞(碰撞过程中不损失机械能),小球B飞出平台后经时间t刚好掉入装有沙子向左运动的小车中,小车与沙子的总质量为m,速度为2v0,小车行驶的路面近似看作是光滑的,求:(1)碰撞后小球A和小球B的速度大小;(2)小球B掉入小车后的速度大小。
16解析(1)A球与B球碰撞过程中系统动量守恒,以向右为正方向,由动量守恒定律得mAv0=mAv1+mBv2碰撞过程中系统机械能守恒,有(2)B球掉入沙车过程中系统水平方向动量守恒,以向右为正方向,由动量守恒定律得mBv2-m车·2v0=(mB+m车)v′
17【训练2】如图所示,A、B是两个用等长细线悬挂起来的大小可忽略不计的小球,mB=5mA,B球静止,拉起A球,使细线与竖直方向夹角为30°,由静止释放A球,在最低点A球与B球发生弹性碰撞。不计空气阻力,则关于碰后两小球的运动,下列说法正确的是()A.A球静止,B球向右,且偏角小于30°B.A球向左,B球向右,且偏角等于30°C.A球向左,B球向右,A球偏角大于B球偏角,且都小于30°D.A球向左,B球向右,A球偏角等于B球偏角,且都小于30°C
18解析设A球到达最低点的速度为v,在最低点A球与B球发生弹性碰撞后,A球的速度为vA,B球的速度为vB,取向右为正方向由动量守恒定律可得mAv=mAvA+mBvB由动能守恒可得A球向左,B球向右,A球偏角大于B球偏角,且都小于30°,故选项C正确。
19【训练3】(多选)(2022·宁夏大学附中高二期末)如图所示,小球A的质量为mA=5kg,动量大小为pA=4kg·m/s,小球A水平向右运动,与静止的小球B发生弹性碰撞,碰后A的动量大小为pA′=1kg·m/s,方向水平向右,则()ADA.碰后小球B的动量大小为pB=3kg·m/sB.碰后小球B的动量大小为pB=5kg·m/sC.小球B的质量为15kgD.小球B的质量为3kg
20解析规定水平向右的方向为正方向,碰撞过程中A、B组成的系统动量守恒,所以有pA=pA′+pB解得pB=3kg·m/s故A正确,B错误;由于是弹性碰撞,所以没有动能损失,故解得mB=3kg故C错误,D正确。
21知识点三 碰撞可能性的判断分析碰撞问题的“三个原则”3.速度合理(1)碰前两物体同向运动,后面物体的速度必大于前面物体的速度,即v后>v前。碰撞后,原来在前的物体的速度一定增大,即v前′≥v后′。(2)碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
22【例3】(多选)如图所示,在光滑的水平面上,有A、B两个小球,A球的动量为10kg·m/s,B球的动量为12kg·m/s。A球追上B球并相碰,碰撞后,A球的动量变为8kg·m/s,方向没变,则A、B两球质量的比值可能为()A.0.5B.0.6C.0.65D.0.75BC解析A、B两球同向运动,A球追上B球要满足vA>vB。两球碰撞过程中动量守恒,且动能不会增多,碰撞结束要满足vB′≥vA′由vA>vB得
23由碰撞过程动量守恒得pA+pB=pA′+pB′,pB′=14kg·m/s由碰撞过程的总动能不增加得故B、C正确。
24【训练4】(多选)(2022·山东泰安高二检测)如图所示,在光滑水平面上,有两个半径相等的小球A、B,质量分别为mA、mB。A向右运动过程中与静止的B发生正碰,碰后两球动量相同,则mA与mB的关系可能是()A.mA=0.5mBB.mA=2mBC.mA=3mBD.mA=4mBBC
25解析取向右为正方向,根据动量守恒定律得mAv0=mAvA+mBvB根据碰撞过程总动能不增加有据题有mAvA=mBvB,又有vA≤vB联立解得mB≤mA≤3mB,故B、C正确。
26【训练5】质量为ma=1kg,mb=2kg的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移—时间图像如图所示,则可知碰撞属于()A.非弹性碰撞B.弹性碰撞C.完全非弹性碰撞D.条件不足,不能确定B
27
28
291.(弹性碰撞)如图所示,5个小球B、C、D、E、F并排放置在光滑的水平面上,B、C、D、E四个小球质量相等,而F球质量小于B球质量,A球的质量等于F球质量,A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()CA.5个小球静止,1个小球运动B.4个小球静止,2个小球运动C.3个小球静止,3个小球运动D.6个小球都运动
30解析由题知mA<mB,则A、B两球相碰后球A速度方向向左,球B向右运动。球B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止。由于mE>mF,则E、F两球都向右运动。故C正确。
312.(结合图像分析碰撞问题)(多选)质量分别为m1和m2的两个物体碰撞前后的位移—时间图像如图所示,以下说法中正确的是()BDA.碰撞前两物体动量相同B.质量m1等于质量m2C.碰撞后两物体一起做匀速直线运动D.碰撞前两物体动量大小相等、方向相反
32解析由图线的斜率可知,两物体碰撞前速度大小相等,方向相反,而碰后速度都为零,设两物体碰撞前速度大小分别为v1、v2,系统碰撞前后动量守恒,以v1方向为正方向,则m1v1-m2v2=0,可得m1v1=m2v2,则碰前两物体动量大小相等、方向相反,同时可得m1=m2,故A、C错误,B、D正确。
333.(碰撞可能性的判断)(多选)在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m静止的B球发生正碰,碰撞可能是弹性的,也可能是非弹性的,则碰后B球的速度大小可能是()A.0.7vB.0.6vC.0.4vD.0.2vBC
344.(弹性碰撞的实例分析)如图所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接,质量为m1的小球从高为h处由静止开始沿轨道下滑,与静止在轨道BC段上质量为m2的小球发生碰撞,碰撞后两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失,求碰撞后小球m2的速度大小v2。解析设碰撞前m1的速度为v0,
35设碰撞后m1与m2的速度分别为v1和v2,根据动量守恒定律有m1v0=m1v1+m2v2由于碰撞过程中无机械能损失,有
36(限时:40分钟)
37A题组一 弹性碰撞和非弹性碰撞1.(2022·山东烟台期中)下列关于碰撞的理解正确的是()A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B.在碰撞现象中,一般内力都远大于外力,所以可以认为碰撞时系统的动能守恒C.如果碰撞过程中机械能守恒,这样的碰撞叫作非弹性碰撞D.微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞
38解析碰撞是十分普遍的现象,它是相对运动的物体相遇时发生的一种现象,一般内力远大于外力,在非弹性碰撞时,系统的动能不守恒;如果碰撞中机械能守恒,就叫作弹性碰撞。微观粒子的相互作用同样具有短时间内发生强大内力作用的特点,所以仍然是碰撞,故A正确,B、C、D错误。
392.新型冠状病毒引发肺炎疫情期间,如图所示,甲、乙两人穿着同款充气“防护服”出来散步,由于两人初次穿充气服,走起路来有些控制不好平衡,所以两人发生了碰撞。若甲的质量为3m,乙的质量为m,且以相同的速率v在光滑水平面上发生相向碰撞,碰撞后甲静止不动,则这次碰撞属于()AA.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定
40
413.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态可能是()DA.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动
42解析两滑块碰撞过程动量守恒,取水平向右方向为正方向,碰撞前系统总动量p=mAvA+mBvB=m·2v0+2m·(-v0)=0,则碰撞后系统的总动量也为零,那么A、B应都静止或向相反方向运动,故D正确。
434.在光滑的水平面上有三个完全相同的小球,它们成一条直线,小球2、3静止,并靠在一起,小球1以速度v0射向它们,如图所示。设碰撞中不损失机械能,则碰后三个小球的速度可能值是()D题组二 弹性碰撞的实例分析解析两个质量相等的小球发生弹性正碰,碰撞过程中动量守恒,动能守恒,碰撞后将交换速度,故D项正确。
445.(2022·甘肃武威十八中高二期中)汽车A和汽车B静止在水平地面上,某时刻汽车A开始倒车,结果汽车A撞到了停在它正后方的汽车B,汽车B上装有智能记录仪,能够测量并记录汽车B前面的物体相对于汽车B自身的速度。在本次碰撞中,如果汽车B的智能记录仪测得碰撞前瞬间汽车A的速度大小为v0,已知汽车A的质量是汽车B质量的2倍,碰撞过程可视为弹性碰撞,则碰后瞬间汽车A相对于地面的速度大小为()C
45
466.(2020·全国卷Ⅲ,15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图1中实线所示。已知甲的质量为1kg,则碰撞过程两物块损失的机械能为()AA.3JB.4JC.5JD.6J
47
487.质量分别为mA=1kg、mB=2kg的A、B两个小球在光滑水平面上发生碰撞,碰撞前后均在同一条直线上。碰撞前速度vA=6m/s、vB=2m/s,碰撞后速度vA′=2m/s、vB′=4m/s。则此碰撞是()A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.无法确定B题组三 碰撞可能性的判断
498.(多选)两个小球A、B在光滑的水平地面上相向运动,已知它们的质量分别是mA=4kg,mB=2kg,A的速度vA=3m/s(设为正),B的速度vB=-3m/s,则它们发生正碰后,其速度可能分别为()A.均为+1m/sB.+4m/s和-5m/sC.+2m/s和-1m/sD.-1m/s和+5m/sAD
50
519.(多选)(2022·重庆七校联考)质量为m的小球A在光滑的水平面上以速度大小v与静止在光滑水平面上的质量为2m的小球B发生正碰,那么碰撞后B球的可能速度大小是()BD解析如果两个小球发生的是完全非弹性碰撞,则有mv=(m+2m)v共如果两个小球发生的是弹性碰撞,则有mv=mvA+2mvB
52
5310.(2022·重庆南岸区期中)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()AA.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶10
54解析两物体的运动是同向追击(都向右运动),只有后边的物体速度大于前边的物体的速度时才能发生碰撞,以此分析应该是A球在左方追击B球,发生碰撞,A球的动量减小4kg·m/s,其动量变为2kg·m/s,根据动量守恒定律知B球动量增加4kg·m/s,其动量变为10kg·m/s,两球质量关系为mB=2mA,则碰撞后A、B两球的速度关系为2∶5,故A正确。
5511.冰球运动员甲的质量为80.0kg,当他以5.0m/s的速度向前运动时,与另一质量为100kg、速度为3.0m/s的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极短,求:(1)碰后乙的速度;(2)碰撞中总机械能的损失。答案(1)1.0m/s方向与乙原来的方向相反(2)1400J解析(1)设运动员甲、乙的质量分别为m甲、m乙,碰前速度大小分别为v1、v2,碰后乙的速度大小为v2′由动量守恒定律有m甲v1-m乙v2=m乙v2′①
56代入数据得v2′=1.0m/s②方向与乙原来的方向相反。(2)设碰撞过程中总机械能的损失为ΔE,应有联立②③式,代入数据得ΔE=1400J。
5712.如图所示,在水平光滑直导轨上,静止着三个质量均为m=1kg的相同小球A、B、C,现让A球以v0=2m/s的速度向着B球运动,A、B两球碰撞后粘合在一起,两球继续向右运动并跟C球碰撞,C球的最终速度vC=1m/s。求:(1)A、B两球跟C球相碰前的共同速度大小;(2)两次碰撞过程中共损失了多少动能。
58答案(1)1m/s(2)1.25J解析(1)A、B相碰满足动量守恒,以v0的方向为正方向,有mv0=2mv1代入数值解得v1=1m/s,即两球跟C球相碰前的速度大小为1m/s。(2)两球与C球碰撞同样满足动量守恒,以v0的方向为正方向,有2mv1=mvC+2mv2解得A、B球碰后的速度v2=0.5m/s两次碰撞共损失的动能
59本课结束