《【高考冲刺】《高考物理》总复习-波粒二象性---全部知识归纳》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
【高考冲刺】名师讲解全国特级教师江新欢博士教授《高中物理》《波粒二象性》
1第一节基本概念1第二节原子结构与原子核2第三节考点深度解析3第四节考点知识归纳4学习的目的和要求
2材料鉴赏:19世纪末,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声----等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。
31900年,在英国皇家学会的新年庆祝会上,物理学家开尔文勋爵作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。”(开尔文)但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到:“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,……”
4这两朵乌云是指什么呢?黑体辐射实验迈克尔逊-莫雷实验后来的事实证明,正是这两朵乌云发展成为一埸革命的风暴,乌云落地化为一埸春雨,浇灌着两朵鲜花。
5普朗克量子力学的诞生相对论问世这两朵乌云到底是什么回事呢?量子力学相对论微观领域高速领域经典力学
6思考与讨论1:在火炉旁边有什么感觉?投在炉中的铁块开始是什么颜色?过一会有是什么颜色?实验:加热铁
7固体或液体,在任何温度下都在辐射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。固体在温度升高时颜色的变化1400K800K1000K1200K例如:铁块温度从看不出发光到暗红到橙色到黄白色一、热辐射现象
8无论是高温物体还是低温物体,都有热辐射,所辐射的能量及波长的分布都随温度而变化。例如,铁块随着温度升高:现象:表明:①辐射强度及波长的分布随温度变化;②随着温度升高,电磁波的短波成分增加。不发光→暗红→赤红→橘红→黄白色注意:激光、日光灯发光不是热辐射热平衡状态:物体的温度恒定时,物体所吸收的能量等于在同一时间内辐射的能量,这时得到的辐射称为平衡热辐射。
9思考与讨论2:一座建设中的楼房还没安装窗子,尽管室内已经粉刷,如果从远处看窗内,你会发现什么?为什么?二、黑体与黑体辐射物体表面能够吸收和反射外界射来的电磁波。如果一个物体在任何温度下,对任何波长的电磁波都完全吸收,而不反射与透射,则称这种物体为绝对黑体,简称黑体。不透明材料制成的带小孔的空腔。
10说明:①黑体是个理想化的模型。例:开孔的空腔,远处的窗口等可近似看作黑体。②对于黑体,在相同温度下的辐射规律是相同的。③一般物体的辐射与温度、材料、表面状况有关,但黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。
11三、黑体辐射的实验规律研究黑体辐射的规律是了解一般物体热辐射性质的基础。1、测量黑体辐射的实验原理图:加热空腔使其温度升高,空腔就成了不同温度下的黑体,从小孔向外的辐射就是黑体辐射。T平行光管三棱镜T
12。2、辐射强度:单位时间内从物体单位面积上所发射的各种波长的总辐射能,称为辐射强度。发现:随温度的升高①各种波长的辐射强度都在增加;②绝对黑体的温度升高时,辐射强度的最大值向短波方向移动辐射强度
13维恩线瑞利--金斯线紫外灾难o实验值/μm123456783、经典物理学所遇到的困难——解释实验曲线一朵令人不安的乌云1)维恩的半经验公式:短波符合;长波不符合2)瑞利----金斯公式:长波符合;短波荒唐----紫外灾难
14普朗克能量子假说辐射物体中包含大量振动着的带电微粒,它们的能量是某一最小能量的整数倍E=nεn=1,2,…ε叫能量子,简称量子,n为量子数,它只取正整数——能量量子化谐振子只能一份一份按不连续方式辐射或吸收能量对于频率为的谐振子,最小能量为:ε=hh=6.62610-34J·s——普朗克常量四、能量子:超越牛顿的发现
15辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:1ε,2ε,3ε,...nε。n为正整数,称为量子数。能量量子经典
16意义:(阅读书本p29)Planck抛弃了经典物理中的能量可连续变化、物体辐射或吸收的能量可以为任意值的旧观点,提出了能量子、物体辐射或吸收能量只能一份一份地按不连续的方式进行的新观点。这不仅成功地解决了热辐射中的难题,而且开创物理学研究新局面,标志着人类对自然规律的认识已经从从宏观领域进入微观领域,为量子力学的诞生奠定了基础。
17黑体辐射公式:1900年10月19日,普朗克在德国物理学会会议上提出一个黑体辐射公式M.Planck德国人1858-1947
18λ(μm)947普朗克实验值123568
19普朗克后来又为这种与经典物理格格不入的观念深感不安,只是在经过十多年的努力证明任何复归于经典物理的企图都以失败而告终之后,他才坚定地相信h的引入确实反映了新理论的本质。1918年他荣获诺贝尔物理学奖。他的墓碑上只刻着他的姓名和
20【例1】下列叙述正确的是()A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波ACD
21【例2】炼钢工人通过观察炼钢炉内的颜色,就可以估计出炉内的温度,这是根据什么道理?[答案]根据热辐射的规律可知,当物体的温度升高时,热辐射中较短波长的成分越来越强,可见光所占份额增大,温度越高红光成分减少,频率比红光大的其他颜色的光,为橙、黄、绿、蓝、紫等光的成分就增多。因此可根据炉内光的颜色大致估计炉内的温度
22【例3】对应于3.4×l0-l9J的能量子,其电磁辐射的频率和波长各是多少?它是什么颜色?[解析]根据公式ε=hν和ν=c/λ得ν=ε/h=5.13×1014Hzλ=c/ν=5.85×10-7Hz5.13×10-14Hz的频率属于黄光的频率范围,它是黄光,其波长为5.85×l0—7m。
23黑体辐射的研究卓有成效地展现在人们的眼前,紫外灾难的疑点找到了,为人类解决了一大难题。使热爱科学的人们又一次倍感欣慰,但真理与谬误之争就此平息了吗?物理难题:1888年,霍瓦(Hallwachs)发现一个带负电的金属板被紫外光照射会放电。近10年以后,1897年,J.Thomson发现了电子,此时,人们认识到那就是从金属表面射出的电子,后来,这些电子被称作光电子(photoelectron),相应的效应叫做光电效应。人们本着对光的完美理论(光的波动性、电磁理论)进行解释会出现什么结果?
24问题:既然灯向外辐射的光能是分立的,一份份的。为何我们看不到灯的亮度发生变化?结论:1、在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的,能量变化是连续的,不必考虑量子化2、在研究微观粒子时必需考虑能量量子化问题与结论普朗克理论:能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。能量是h的整数倍。每份能量为:E=hν
251900年12月14日,普朗克在柏林宣读了他关于黑体辐射的论文,宣告了量子的诞生。那一年他42岁。普朗克把能量子引入物理学,正确地破除了”能量连续变化”的传统观念,成为现代物理学思想的基石之一,为我们打开了量子之门,就在1900年,一个名叫爱因斯坦(AlbertEinstein)的青年从苏黎世联邦工业大学(ETH)毕业,正在为将来的生活发愁。5年后他受量子化启发提出了光量子,成功的解释了光电效应.能量量子化:物理学的新纪元
26就在那一年,在丹麦,15岁的玻尔(NielsBohr)正在哥本哈根的中学里读书。玻尔有着好动的性格。学习方面,他在数学和科学方面显示出了非凡的天才,但是他的笨拙的口齿和惨不忍睹的作文却是全校有名。13年后他提出了原子轨道量子化.德布罗意(LouisdeBroglie)当时8岁,还正在家里接受良好的幼年教育。后来他提出了物质波.再过12个月,维尔兹堡(Wurzberg)的一位著名希腊文学教授就要喜滋滋地看着他的宝贝儿子小海森堡(WernerKarlHeisenberg)呱呱坠地。以上人物都将在我们的课文中出现.请同学们记住他们的名字.能量量子化:物理学的新纪元
27联想根据物理课本知识,物体的所带电量是基本电荷的整数倍,但现代科学发现:有的基本粒子所带电量是基本电荷的分数倍。普朗克提出了能量是最小能量hν的整数倍,那么该最小能量还能再分吗?如果能分,又是按怎样的规律分呢?
281900年12月14日普朗克在德国物理学会上报告了自己的研究结果,他的公式受到欢迎,但他的能量子假说,却受到冷遇,当时没有人相信他的假说。能量子假说的提出,给经典物理学打开了一个缺口,为量子物理学安放了一块奠基石,宣告量子物理学的诞生。
29能量的变化竟然是不连续的,这与物理学界几百年来信奉的“自然界无跳跃”的原则直接矛盾,因此量子论出现之后,许多物理学家不予接受。量子论的出现,物理学界最初的反应是极其冷淡的。人们只承认普朗克那个同实验一致的经验性的辐射公式,而不承认他的理论性的量子假说。
30遗憾的是,普朗克虽然发现了能量子,但他不能理解这一发现的意义,对自己的发现长期惴惴不安。在发现能量子之后的长达14年时间,他总想退回到经典物理学的立场。他曾在散步时对儿子说:“我现在做的事情,要么毫无意义,要么可能成为牛顿以后物理学上最大的发现。”
31普朗克在做出量子假说时已年过四十。他受过严格的经典物理学训练,对经典物理学十分熟悉和热爱。他不愿意同经典物理学决裂,只是迫于事实的压力,才不得不做出能量子的假说。他的能量子假说是不彻底的,他的理论还是以承认电磁波本身的连续性为基础的。他把自己的量子假说仅仅局限于振子对电磁波的吸收和发射的特殊性上。
321905年,爱因斯坦提出光量子假说,成功地解释了光电效应;1906年,他又将量子理论运用到固体比热问题,获得成功;1912年,玻尔将量子理论引入到原子结构理论中,克服了经典理论解释原子稳定性的困难,建立了他的原子结构模型,取得了原子物理学划时代的进展;1922年,康普顿通过实验最终使物理学家们确认光量子图景的实在性,从而使量子理论得到科学界的普遍承认。
33第2讲波粒二象性 原子结构与原子核
34光的波粒二象性
35
363.对光电效应规律的解释
37
38
392.由曲线可以得到的物理量(1)极限频率:图线与ν轴交点的横坐标ν0.(2)逸出功:图线与Ekm轴交点的纵坐标的值W0=E.(3)普朗克常量:图线的斜率k=h.
40电子的发现
41
42
43
44从高压电场的阴极发出的阴极射线,穿过C1C2后沿直线打在荧光屏A′上.(1)当在平行极板上加一如图所示的电场,发现阴极射线打在荧光屏上的位置向下偏,则可判定,阴极射线带有负电荷.(2)为使阴极射线不发生偏转,则请思考可在平行极板区域采取什么措施.
45
46
47
48原子的核式结构
49
50
51(2)实验条件:金属箔是由重金属原子组成,很薄,厚度接近单原子的直径.全部设备装在真空环境中,因为α粒子很容易使气体电离,在空气中只能前进几厘米.显微镜可在底盘上旋转,可在360°的范围内进行观察.(3)实验结果:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少数偏转角度大于90°,甚至被弹回.
52α粒子的大角度散射现象无法用汤姆孙的原子模型解释.α粒子散射实验的结果揭示了:①原子内部绝大部分是空的;②原子内部有一个很小的“核”.
53
54
55氢原子光谱
563.吸收光谱:吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸气或气体后产生的.太阳光谱为吸收光谱.
57
582.卢瑟福的原子核式结构模型与经典电磁理论的矛盾主要有两点:按照经典电磁理论,电子在绕核做加速运动的过程中,要向外辐射电磁波,因此能量要减少,电子轨道半径也要变小,最终会落到原子核上,因而原子是不稳定的;电子在转动过程中,随着转动半径的缩小,转动频率不断增大,辐射电磁波的频率不断变化,因而大量原子发光的光谱应该是连续光谱.然而事实上,原子是稳定的,原子光谱也不是连续光谱而是线状光谱.
59玻尔理论 能级
60
61
62
63
64
65天然放射现象
66
67
68
69
70
71原子核的衰变
72
73
74
75
76
77
78
79核反应
80
81
82
83
84
85
86(3)核反应遵循质量数守恒而不是质量守恒,核反应方程中反应前后的总质量一般会发生变化(质量亏损)且释放出核能.(4)当放射性物质发生连续衰变时,原子核中有的发生衰变,有的不发生衰变,同时伴随着辐射.
87核力 核能
88
89
90裂变与聚变
91
92
932.热核反应和裂变反应相比,具有许多优越性.首先,热核反应释放的能量,就相同质量的核燃料来讲,比裂变反应大.再有,裂变时产生放射性物质,处理起来比较困难,热核反应在这方面的问题要简单得多.第三,热核反应所用的燃料——氘,在地球上的储量非常丰富,1L海水中大约有0.038g氘,如果用来进行热核反应,放出的能量和燃烧300L汽油相当.因此,海水中的氘就是异常丰富的能源.
94
95光电效应命题规律考查对光电效应规律的理解和爱因斯坦光电效应方程的应用.
96
97[解析]①光电流的大小与光强有关,A错误;②发生光电效应的条件是入射光的频率大于等于材料的极限频率,B错误,D正确;③入射光的频率越大,遏止电压越大,C正确.[答案]CD[总结评述]本题考查光电效应的基本知识,属容易题,理解发生光电效应的条件是关键.
98
99
100A.逸出功与ν有关B.Ekm与入射光强度成正比C.当ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关[答案]D[解析]由爱因斯坦光电效应方程Ekm=hν-W.得ΔEkm/Δν=h,故A、B、C错误,D正确.
101命题规律考查光的波粒二象性的理解、物质波的理解.光的波粒二象性、物质波
102
103[解析]牛顿的“微粒说”是牛顿所描绘的那种遵循经典力学规律的机械微粒,与“光子说”不同,故选项A错.任何一个运动着的物体,都具有波动性,这种波叫做物质波,故选项B对.光子在空间各点出现的概率,可以用波动规律来描述,即光波是概率波,选项D对.答案为BCD.[答案]BCD
104物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光电流的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹,对这个实验结果有下列认识,正确的是()
105A.曝光时间不长时,出现不规则的点子,表现出光的波动性B.单个光子通过双缝后的落点无法预测C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才能表现出光的粒子性[答案]BC[解析]由于光波是一种概率波,故B、C正确.A中的现象说明了光的粒子性,个别光子的行为才通常表现出粒子性,故A、D错误.
106命题规律考查α粒子散射实验条件、实验现象、实验结论.α粒子散射现象
107
108A.α粒子在A处的速度比在B处的速度小B.α粒子在B处的速度最大C.α粒子在A、C两处的速度大小相等D.α粒子在B处的速度比在C处的速度要小
109[解析]从A到B,电场力做负功,α粒子的速度减小,从B到C,电场力做正功,α粒子的速度增大,所以选项A、B错,D正确.由于A、C处于同一等势面上,根据动能定理得粒子在A、C两处的速度大小相等,所以选项C也正确.[答案]CD
110
111[答案]ACD[解析]卢瑟福的原子核式结构结论的主要内容是:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕核旋转,由此可见B选项错,A、C、D选项正确.
112命题规律考查对玻尔理论的理解和氢原子跃迁、电离能量的计算.能级
113
114A.吸收光子的能量为hν1+hν2B.辐射光子的能量为hν1+hν2C.吸收光子的能量为hν2-hν1D.辐射光子的能量为hν2-hν1
115[解析]由题意,hν1=Ekm-Ekn①hν2=Ekk-Ekn②两式相减,得辐射光子的能量Ekk-Ekm=hν2-hν1,所以D正确,A、B、C错误.[答案]D
116
117[答案]C
118命题规律考查原子核发生α衰变,β衰变的次数及反应方程的书写.衰变规律
119
120A.它的核内中子数为289B.它的核内质子数为289C.它的原子核可能经过20次α衰变和9次β衰变后,变为铋209D.如果它形成中性原子,其核外电子数为175
121[解析]“超重”元素的中子数为175,A项错误;质子数为114,B项错误;变为铋209过程中,发生α衰变的次数为(289-209)/4=20次,发生β衰变的次数为9次,C项正确;如果它形成中性原子,其核外电子数为114,D项错误.[答案]C
122[答案]BC
123
124命题规律考查质能方程的应用及与力、电磁的综合应用.核能、质能方程
125
126[答案]D
127(2011·佛山模拟)“嫦娥一号”月球探测卫星于2007年10月24日在西昌卫星发射中心由“长征三号甲”运箭火箭发射升空.该卫星用太阳能电池板作为携带科研仪器的电源,它有多项科研任务,其中一项是探测月球上氦3的含量,氦3是一种清洁、安全和高效的核融合发电燃料,可以采用在高温高压下用氘和氦3进行核聚变反应发电.
128若已知氘核的质量为2.0136u,氦3的质量为3.0150u,氦核的质量为4.00151u,质子质量为1.00783u,中子质量为1.008665u,1u相当于931.5MeV,则下列说法正确的是()
129
130[答案]B[解析]由核电荷数守恒易知A错误;月光是太阳能的反射光,对月光分析只能得出太阳上存在某元素,D错误;由质能方程易知B正确.
131《能量量子化:物理学的新纪元》第三节波粒二象性考点解析
1321、知识与技能:(1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射(2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系(3)了解能量子的概念2、过程与方法:了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。
1333、情感态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。【重点难点】1、重点:能量子的概念2、难点:黑体辐射的实验规律
13417世纪明确形成了两大对立学说牛顿惠更斯微粒说波动说19世纪初证明了波动说的正确性由于波动说没有数学基础以及牛顿的威望使得微粒说一直占上风19世纪末光电效应现象使得爱因斯坦在20世纪初提出了光子说:光具有粒子性对光学的研究从很早就开始了……
135能量量子化;物理学的新纪元1、黑体与黑体辐射热辐射固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。固体在温度升高时颜色的变化1400K800K1000K1200K
136能全部吸收各种波长的辐射能而不发生反射,折射和透射的物体称为绝对黑体。简称黑体不透明的材料制成带小孔的的空腔,可近似看作黑体。黑体模型研究黑体辐射的规律是了解一般物体热辐射性质的基础。2.黑体辐射实验规律
137实验装置T平行光管三棱镜T
1380123456λ(μm)1700K1500K1300K1100K实验结果
139o实验值/μm维恩线瑞利--金斯线紫外灾难普朗克线12345678
1403.能量子超越牛顿的发现ε=hν辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε,1ε,2ε,3ε,...nε.n为正整数,称为量子数。能量量子经典h=6.626*10-34J.s
141λ(μm)123568947普朗克实验值
14217.2《科学的转折:光的粒子性》
143教学目标知识与技能:1.通过实验了解光电效应的实验规律。2.知道爱因斯坦光电效应方程以及意义。3.了解康普顿效应,了解光子的动量过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。3、情感态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。【重点难点】1、重点:光电效应的实验规律2、难点:爱因斯坦光电效应方程以及意义
144物理难题:1888年,霍瓦(Hallwachs)发现一充负电的金属板被紫外光照射会放电。近10年以后,因为1897年,J.Thomson才发现电子,此时,人们认识到那就是从金属表面射出的电子,后来,这些电子被称作光电子(photoelectron),相应的效应叫做光电效应。人们本着对光的完美理论(光的波动性、电磁理论)进行解释会出现什么结果?
145第1课时光电效应光子
146问题1:回顾前面的学习,总结人类对光的本性的认识的发展过程?
147用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。。一、光电效应现象表明锌板在射线照射下失去电子而带正电
148定义:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子
1491.什么是光电效应当光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。逸出的电子称为光电子。一、光电效应
150阳极阴极石英窗光线经石英窗照在阴极上,便有电子逸出----光电子。光电子在电场作用下形成光电流。2.光电效应的实验规律1.光电效应实验
151阳极阴极将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称遏止电压。遏止电压
152IUcOU光强较弱光电效应伏安特性曲线光电效应实验装置遏止电压一、光电效应的实验规律阳极阴极
153IIsUaOU光强较强光强较弱光电效应伏安特性曲线光电效应实验装置遏止电压饱和电流一、光电效应的实验规律阳极阴极
154阳极阴极石英窗2.光电效应实验规律①.光电流与光强的关系饱和光电流强度与入射光强度成正比。②.截止频率c----极限频率对于每种金属材料,都相应的有一确定的截止频率c。当入射光频率>c时,电子才能逸出金属表面;当入射光频率<c时,无论光强多大也无电子逸出金属表面。③光电效应是瞬时的。从光开始照射到光电逸出所需时间<10-9s。
155经典理论无法解释光电效应的实验结果。经典认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
156光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
1573.爱因斯坦的光量子假设1.内容光不仅在发射和吸收时以能量为h的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为的光是由大量能量为=h光子组成的粒子流,这些光子沿光的传播方向以光速c运动。在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功A,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:2.爱因斯坦光电效应方程为电子逸出金属表面所需做的功,称为逸出功;为光电子的最大初动能。
1583.从方程可以看出光电子初动能和照射光的频率成线性关系4.从光电效应方程中,当初动能为零时,可得极极限频率:爱因斯坦对光电效应的解释:1.光强大,光子数多,释放的光电子也多,所以光电流也大。2.电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
159由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。4.光电效应理论的验证美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。
160爱因斯坦由于对光电效应的理论解释和对理论物理学的贡献获得1921年诺贝尔物理学奖密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。
161放大器控制机构可以用于自动控制,自动计数、自动报警、自动跟踪等。4.光电效应在近代技术中的应用1.光控继电器可对微弱光线进行放大,可使光电流放大105~108倍,灵敏度高,用在工程、天文、科研、军事等方面。2.光电倍增管
162应用光电管光电源电流计IAK
163第2课时康普顿效应
1641.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射2.康普顿效应1923年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。
165一.康普顿散射的实验装置与规律:晶体光阑X射线管探测器X射线谱仪石墨体(散射物质)j0散射波长
166康普顿正在测晶体对X射线的散射按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!
167康普顿散射曲线的特点:1.除原波长0外出现了移向长波方向的新的散射波长。2.新波长随散射角的增大而增大。散射中出现≠0的现象,称为康普顿散射。波长的偏移为=0Oj=45Oj=90Oj=135Oj................................................................................o(A)0.7000.750λ波长.......0
168称为电子的Compton波长只有当入射波长0与c可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。波长的偏移只与散射角有关,而与散射物质种类及入射的X射线的波长0无关,c=0.0241Å=2.4110-3nm(实验值)
169遇到的困难经典电磁理论在解释康普顿效应时2.无法解释波长改变和散射角的关系。射光频率应等于入射光频率。其频率等于入射光频率,所以它所发射的散过物质时,物质中带电粒子将作受迫振动,1.根据经典电磁波理论,当电磁波通
170光子理论对康普顿效应的解释康普顿效应是光子和电子作弹性碰撞的子能量几乎不变,波长不变。小于原子质量,根据碰撞理论,碰撞前后光光子将与整个原子交换能量,由于光子质量远2.若光子和束缚很紧的内层电子相碰撞,是散射光的波长大于入射光的波长。部分能量传给电子,散射光子的能量减少,于1.若光子和外层电子相碰撞,光子有一结果,具体解释如下:
1713.因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。光子理论对康普顿效应的解释
172三.康普顿散射实验的意义(1)有力地支持了爱因斯坦“光量子”假设;(2)首次在实验上证实了“光子具有动量”的假设;(3)证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。康普顿的成功也不是一帆风顺的,在他早期的几篇论文中,一直认为散射光频率的改变是由于“混进来了某种荧光辐射”;在计算中起先只考虑能量守恒,后来才认识到还要用动量守恒。康普顿于1927年获诺贝尔物理奖。
173康普顿效应康普顿效应康普顿,1927年获诺贝尔物理学奖(1892-1962)美国物理学家1927
1741925—1926年,吴有训用银的X射线(0=5.62nm)为入射线,以15种轻重不同的元素为散射物质,四、吴有训对研究康普顿效应的贡献1923年,参加了发现康普顿效应的研究工作.对证实康普顿效应作出了重要贡献。在同一散射角()测量各种波长的散射光强度,作了大量X射线散射实验。(1897-1977)吴有训
175光子的能量和动量
176动量能量是描述粒子的,频率和波长则是用来描述波的
17717.3《崭新的一页:粒子的波动性》
1781、知识与技能:了解光的波粒二象性;了解粒子的波动性.2、过程与方法:培养学生的观察、分析能力。3、情感态度与价值观:培养学生严谨的科学态度,正确地获取知识的方法。【重点难点】1、重点:粒子波动性的理解2、难点:对德布罗意波的实验验证
179德布罗意波波粒二象性1、德布罗意波(物质波)De.Broglie1923年发表了题为“波和粒子”的论文,提出了物质波的概念。他认为,“整个世纪以来(指19世纪)在光学中比起波动的研究方法来,如果说是过于忽视了粒子的研究方法的话,那末在实物的理论中,是否发生了相反的错误呢?是不是我们把粒子的图象想得太多,而过分忽略了波的图象呢”
180一、德布罗意的物质波德布罗意(duedeBroglie,1892-1960)德布罗意原来学习历史,后来改学理论物理学。他善于用历史的观点,用对比的方法分析问题。1923年,德布罗意试图把粒子性和波动性统一起来。1924年,在博士论文《关于量子理论的研究》中提出德布罗意波,同时提出用电子在晶体上作衍射实验的想法。爱因斯坦觉察到德布罗意物质波思想的重大意义,誉之为“揭开一幅大幕的一角”。法国物理学家,1929年诺贝尔物理学奖获得者,波动力学的创始人,量子力学的奠基人之一。
181能量为E、动量为p的粒子与频率为v、波长为的波相联系,并遵从以下关系:E=mc2=hv这种和实物粒子相联系的波称为德布罗意波(物质波或概率波),其波长称为德布罗意波长。
182一切实物粒子都有波动性后来,大量实验都证实了:质子、中子和原子、分子等实物微观粒子都具有波动性,并都满足德布洛意关系。一颗子弹、一个足球有没有波动性呢?质量m=0.01kg,速度v=300m/s的子弹的德布洛意波长为计算结果表明,子弹的波长小到实验难以测量的程度。所以,宏观物体只表现出粒子性。
183由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上去,得出物质波(德布罗意波)的概念:任何一个运动着的物体都有一种波与它对应,该波的波长λ=。【例1】试估算一个中学生在跑百米时的德布罗意波的波长。解:估计一个中学生的质量m≈50kg,百米跑时速度v≈7m/s,则由计算结果看出,宏观物体的物质波波长非常小,所以很难表现出其波动性。
184例题2(1)电子动能Ek=100eV;(2)子弹动量p=6.63×106kg.m.s-1,求德布罗意波长。解(1)因电子动能较小,速度较小,可用非相对论公式求解。=1.23Å(2)子弹:h=6.63×10-34=1.0×10-40m可见,只有微观粒子的波动性较显著;而宏观粒子(如子弹)的波动性根本测不出来。
185一个质量为m的实物粒子以速率v运动时,即具有以能量E和动量P所描述的粒子性,同时也具有以频率n和波长l所描述的波动性。德布罗意关系如速度v=5.0102m/s飞行的子弹,质量为m=10-2Kg,对应的德布罗意波长为:如电子m=9.110-31Kg,速度v=5.0107m/s,对应的德布罗意波长为:太小测不到!X射线波段
1862、戴维逊-革末实验1927年,Davisson和Germer进行了电子衍射实验。(该实验荣获1937年Nobel物理学奖)戴维逊--革末实验电子衍射实验电子束垂直入射到镍单晶的水平面上,在散射方向上探测到一个强度极大。(可用晶体对X射线的衍射方法来分析)
187L.V.德布罗意电子波动性的理论研究1929诺贝尔物理学奖
188C.J.戴维孙通过实验发现晶体对电子的衍射作用1937诺贝尔物理学奖
189
190
191
192X射线经晶体的衍射图电子射线经晶体的衍射图
193类似的实验:1927年,汤姆逊电子衍射实验1960年,C.Jonson的电子双缝干涉实验后来的实验证明原子、分子、中子等微观粒子也具有波动性。德布罗意公式成为揭示微观粒子波-粒二象性的统一性的基本公式,1929年,DeBroglie因发现电子波而荣获Nobel物理学奖。
194电子显微镜
195
19617.4《概率波》
197教学目标(一)知识与技能1.了解微粒说的基本观点及对光学现象的解释和所遇到的问题.2.了解波动说的基本观点及对光学现象的解释和所遇到的问题.3.了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性.4.了解光是一种概率波.(二)过程与方法1.领悟什么是概率波2.了解物理学中物理模型的特点初步掌握科学抽象这种研究方法3.通过数形结合的学习,认识数学工具在物理科学中的作用
198(三)情感、态度与价值观理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的.【重点难点】1、重点:人类对光的本性的认识的发展过程.2、难点:对量子化、波粒二象性、概率波等概念的理解
199电子双缝衍射1)用足够强的电子束进行双缝衍射——出现了明暗相间的衍射条纹,体现电子的波动性——衍射条纹掩饰了电子的粒子性未能体现电子在空间分布的概率性质——得到的结果与光的双缝衍射结果一样
200物质波不是经典波——经典的波是介质中质元共同振动的形成的双缝衍射中体现为无论电子强度多么弱屏幕上出现的是强弱连续分布的衍射条纹——实际上在电子强度弱的情形中电子在屏幕上的分布是随机的,完全不确定的
201微观粒子不是经典粒子——经典粒子双缝衍射——子弹可以看作是经典粒子假想用机关枪扫射双缝A和B,屏幕C收集子弹数目
2021)将狭缝B挡住——子弹通过A在屏幕C上有一定的分布——类似于单缝衍射的中央主极大P1——子弹落在中央主极大范围的概率分布
2032)将狭缝A挡住——子弹通过狭缝B在屏幕C上有一定的分布——类似于单缝衍射的中央主极大P2——子弹落在中央主极大范围的概率分布
2043)A和B狭缝同时打开——子弹是经典粒子原来通过A狭缝的子弹——还是通过A原来通过B狭缝的子弹——还是通过B屏幕C上子弹的概率分布不因两个狭缝同时打开每颗子弹会有新的选择!
205——电子双缝衍射——电子枪发射出的电子,在屏幕P上观察电子数目1)将狭缝B挡住——电子通过狭缝A在屏幕C有一定分布——类似于单缝衍射的中央主极大
2063)A和B狭缝同时打开——如果电子是经典粒子原来通过A狭缝的电子——还是通过A原来通过B狭缝的电子——还是通过B屏幕上电子的概率分布
207屏幕C——实际观察到类似光的双缝衍射条纹屏幕C上电子的概率分布——只开一个狭缝和同时开两个狭缝电子运动的方向具有随机性——A和B狭缝同时开时电子似乎“知道”两个狭缝都打开!
208双缝和屏幕之间——到底发生了什么?屏幕上电子的分布——有了新的概率分布电子——不是经典粒子
209光子在某处出现的概率由光在该处的强度决定I大光子出现概率大I小光子出现概率小统一于概率波理论单缝衍射光子在某处出现的概率和该处光振幅的平方成正比
21017.5《不确定的关系》
211教学目标(一)知识与技能1.了解不确定关系的概念和相关计算.2.了解物理模型与物理现象(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。(三)情感、态度与价值观能领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。【重点难点】1、重点:不确定关系的概念2、难点:对不确定关系的定量应用
212玻恩(M.Born.1882-1970)德国物理学家。1926年提出波函数的统计意义。为此与博波(W.W.GBothe.1891-1957)共享1954年诺贝尔物理学奖。玻恩M.Born.
213一、德布罗意波的统计解释1926年,德国物理学玻恩(Born,1882--1972)提出了概率波,认为个别微观粒子在何处出现有一定的偶然性,但是大量粒子在空间何处出现的空间分布却服从一定的统计规律。
214二.经典波动与德布罗意波(物质波)的区别经典的波动(如机械波、电磁波等)是可以测出的、实际存在于空间的一种波动。而德布罗意波(物质波)是一种概率波。简单的说,是为了描述微观粒子的波动性而引入的一种方法。
215不确定度关系(uncertaintyrelatoin)经典力学:运动物体有完全确定的位置、动量、能量等。微观粒子:位置、动量等具有不确定量(概率)。1、电子衍射中的不确定度一束电子以速度v沿oy轴射向狭缝。电子在中央主极大区域出现的几率最大。y
216在经典力学中,粒子(质点)的运动状态用位置坐标和动量来描述,而且这两个量都可以同时准确地予以测定。然而,对于具有二象性的微观粒子来说,是否也能用确定的坐标和确定的动量来描述呢?下面我们以电子通过单缝衍射为例来进行讨论。设有一束电子沿轴射向屏AB上缝宽为的狭缝,于是,在照相底片CD上,可以观察到如下图所示的衍射图样。如果我们仍用坐标和动量来描述这一电子的运动状态,那么,我们不禁要问:一个电子通过狭缝的瞬时,它是从缝上哪一点通过的呢?也就是说,电子通过狭缝的瞬时,其坐标为多少?显然,这一问题,我们无法准确地回答,因为此时该电子究竟在缝上哪一点通过是无法确定的,即我们不能准确地确定该电子通过狭缝时的坐标。
217对于第一衍射极小,式中为电子的德布罗意波长。电子通过狭缝的瞬间,其位置在x方向上的不确定量为y电子的位置和动量分别用和来表示。
218同一时刻,由于衍射效应,粒子的速度方向有了改变,缝越小,动量的分量Px变化越大。y分析计算可得:
219①许多相同粒子在相同条件下实验,粒子在同一时刻并不处在同一位置。②用单个粒子重复,粒子也不在同一位置出现。不确定性关系(1901~1976)德国物理学家,量子力学矩阵形式的创建人,1932年获诺贝尔物理学奖。
220经严格证明应为:这就是著名的海森伯测不准关系式(约化普朗克常量)
221能量与时间的不确定关系:原子在激发态的平均寿命相应地所处能级的能量值一定有一不确定量。称为激发态的能级宽度。
222我们知道,原子核的数量级为10-15m,所以,子弹位置的不确定范围是微不足道的。可见子弹的动量和位置都能精确地确定,不确定关系对宏观物体来说没有实际意义。例1.一颗质量为10g的子弹,具有200m·s-1的速率,若其动量的不确定范围为动量的0.01%(这在宏观范围是十分精确的了),则该子弹位置的不确定量范围为多大?解:子弹的动量动量的不确定范围由不确定关系式(17-17),得子弹位置的不确定范围
223我们知道原子大小的数量级为10-10m,电子则更小。在这种情况下,电子位置的不确定范围比原子的大小还要大几亿倍,可见企图精确地确定电子的位置和动量已是没有实际意义。例2.一电子具有200m/s的速率,动量的不确定范围为动量的0.01%(这已经足够精确了),则该电子的位置不确定范围有多大?解:电子的动量为动量的不确定范围由不确定关系式,得电子位置的不确定范围
224宏观物体微观粒子具有确定的坐标和动量没有确定的坐标和动量可用牛顿力学描述。需用量子力学描述。有连续可测的运动轨道,可有概率分布特性,不可能分辨追踪各个物体的运动轨迹。出各个粒子的轨迹。体系能量可以为任意的、连能量量子化。续变化的数值。不确定度关系无实际意义遵循不确定度关系微观粒子和宏观物体的特性对比
225不确定关系的物理意义和微观本质1.物理意义:微观粒子不可能同时具有确定的位置和动量。粒子位置的不确定量x越小,动量的不确定量Px就越大,反之亦然。2.微观本质:是微观粒子的波粒二象性及粒子空间分布遵从统计规律的必然结果。
226不确定关系式表明:1.微观粒子的坐标测得愈准确(x0),动量就愈不准确(px);微观粒子的动量测得愈准确(px0),坐标就愈不准确(x)。但这里要注意,不确定关系不是说微观粒子的坐标测不准;也不是说微观粒子的动量测不准;更不是说微观粒子的坐标和动量都测不准;而是说微观粒子的坐标和动量不能同时测准。
227这是因为微观粒子的坐标和动量本来就不同时具有确定量。这本质上是微观粒子具有波粒二象性的必然反映。由上讨论可知,不确定关系是自然界的一条客观规律,不是测量技术和主观能力的问题。3.不确定关系提供了一个判据:当不确定关系施加的限制可以忽略时,则可以用经典理论来研究粒子的运动。当不确定关系施加的限制不可以忽略时,那只能用量子力学理论来处理问题。2.为什么微观粒子的坐标和动量不能同时测准?
228
229理知识第十二章提能力第2单元明考向课堂考题领悟课下综合提升
230返回231
231返回[思维启动]在α粒子散射实验中,使α粒子散射的力是哪种力?提示:α粒子与原子核外电子的作用是很微弱的。由于原子核的质量和电荷量很大,α粒子与原子核很近时,库仑斥力很强,足以使α粒子发生大角度偏转甚至反向弹回,故使α粒子散射的原因是库仑斥力。
232返回
233返回
234返回
235返回(2)对氢原子的能级图的理解,如图12-2-2所示图12-2-2
236返回
237返回[应用升级]图12-2-3甲所示为氢原子的能级,图乙为氢原子的光谱。已知谱线a是氢原子从n=4的能级跃迁到n=2的能级时的辐射光,则谱线b是氢原子()
238返回图12-2-3
239返回A.从n=3的能级跃迁到n=2的能级时的辐射光B.从n=5的能级跃迁到n=2的能级时的辐射光C.从n=4的能级跃迁到n=3的能级时的辐射光D.从n=2的能级跃迁到n=1的能级时的辐射光
240返回答案:B
241返回[思维启动]如图12-2-4所示,到达铝板的射线有________,到达混凝土的射线有________,由此可得出这三种射线的穿透能力由大到小的顺序是________。图12-2-4
242返回提示:α射线穿透能力很弱,一张纸挡住,故到达铝板的射线有β射线和γ射线,γ射线的穿透能力很强,能轻易穿透几厘米厚的铝板,故能到达混凝土,穿透能力由大到小的顺序为γ、β、α。
243返回
244返回2.原子核的衰变(1)三种射线的比较:
245返回种类α射线β射线γ射线在电磁场中偏转与α射线反向偏转不偏转贯穿本领最弱,用纸能挡住较强,穿透几毫米的铝板最强,穿透几厘米的铅板对空气的电离作用很强较弱很弱
246返回
247返回
248返回
249返回
250返回5.核反应的四种类型及核反应方程的书写
251返回
252返回
253返回
254返回[应用升级]2.一块含铀的矿石质量为M,其中铀元素的质量为m,铀发生一系列衰变,最终生成物为铅,已知铀的半衰期为T,那么下列说法中正确的是()
255返回
256返回答案:C
257返回
258返回[知识检索](1)当光子能量大于或等于13.6eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6eV,氢原子电离后,电子具有一定的初动能。
259返回
260返回[典题例析][例1]如图12-2-5所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49eV的金属钠,说法正确的是()
261返回图12-2-5
262返回A.这群氢原子能发出三种频率不同的光,其中从n=3跃迁到n=2所发出的光波长最短B.这群氢原子能发出两种频率不同的光,其中从n=3跃迁到n=1所发生的光频率最小C.金属钠表面所发出的光电子的最大初动能为9.60eVD.金属钠表面所发出的光电子的最大初动能为11.11eV
263返回[审题指导]解答本题时应注意以下两点:(1)光的频率最小或波长最短对应光子能量的特点。(2)金属表面所发出的光电子的最大初动能对应入射光子的能量最大。
264返回[答案]C
265返回[拓展训练]1.氢原子部分能级的示意图如图12-2-6所示。不同色光的光子能量如下表所示:色光红橙黄绿蓝—靛紫光子能量范围(eV)1.61~2.002.00~2.072.07~2.142.14~2.532.53~2.762.76~3.10
266返回图12-2-6
267返回处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为()A.红、蓝—靛B.黄、绿C.红、紫D.蓝—靛、紫
268返回答案:A
269返回[知识检索]确定衰变次数的方法
270返回
271返回
272返回
273返回图12-2-7
274返回
275返回
276返回[答案](1)C(2)正电子56天
277返回
278返回答案:B
279返回[知识检索]
280返回[典题例析]
281返回(1)写出氢核聚变的核反应方程;(2)计算发生一次核反应释放的能量。(以MeV为单位,结果保留三位有效数字)粒子名称质子pα粒子电子e中子n质量/u1.00734.00150.000551.0087
282返回[思路点拔]解答本题时应注意以下两点:(1)确定核反应生成物时应考虑核电荷数守恒和质量数守恒两个方面。(2)计算核能时应注意题目能量单位和有效数字要求。
283返回
284返回[拓展训练]
285返回
286返回答案:B
287返回
288返回1.(2011·新课标全国卷)用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则()
289返回
290返回解析:当用频率为ν0的光照射处于基态的氢原子时,由所发射的光谱中仅能观测到三种频率的谱线可知,这三种频率的光子应是氢原子从第3能级向低能级跃迁过程中所辐射的,由能量特点可知,ν3=ν1+ν2,B正确。答案:B
291返回
292返回解析:钍核有142个中子,铅核有126个中子,铅核比钍核少16个中子,选项A错误;利用γ射线的贯穿本领可检查金属内部有无砂眼或裂纹,选项D错误。答案:BC
293返回
294返回
295返回4.(2012·珠海模拟)让一个氘核和一个氚核发生聚变时,可产生一个氦核同时放出一个中子,求这个核反应释放出的能量。(已知氘核质量为mD=2.014102u,氚核质量为mT=3.016050u,氦核的质量mHe=4.002603u,中子质量mn=1.008665u,1u=1.6606×10-27kg)
296返回答案:2.82×10-12J
297返回点击此图片进入“课下综合提升”
此文档下载收益归作者所有