Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown

Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown

ID:81816599

大小:3.19 MB

页数:4页

时间:2023-07-20

上传者:U-14522
Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown_第1页
Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown_第2页
Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown_第3页
Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown_第4页
资源描述:

《Functionalized Au Substrate How Critical Is the pH of Ag ( I ) - Lathika et al. - 2020 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterDirectLayer-by-LayerGrowthofCrystallineAg-TCNQThinFilmsonFunctionalizedAuSubstrate:HowCriticalIsthepHofAg(I)Solution?AswaniSathishLathika,ShammiRana,AnupamPrasoon,PoojaSindhu,DebashreeRoy,andNirmalyaBallav*CiteThis:J.Phys.Chem.Lett.2020,11,10548−10551ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Wet-chemicalfabricationofacrystallineAg-TCNQ(TCNQ=7,7,8,8-tetracyanoquinodimethane)thinfilmonnon-Agsubstrateischallengingwherebythechemistrywaspoweredbyphotonenergyand/orelectricalenergy.Wereportforthefirsttime,directchemicalgrowthofaAg-TCNQthinfilmonafunctionalizedAusubstratebyemployingthelayer-by-layer(LbL)approachatambientreactionconditions.VariousAg(I)saltprecursorspreviouslyrealizedtobeunsuitableforthefabricationofAg-TCNQthinfilmsonnon-AgsubstratesultimatelygaverisetodenseanduniformthinfilmsofAg-TCNQ.ThecrucialknobregulatingthedirectformationofthethinfilmsofAg-TCNQwasidentifiedtobethepHoftherespectiveAg(I)solutions.RapidadvancesintechnologyinrecentyearshaveledtoahavereportedaAg-TCNQthinfilmonafunctionalizedAusurgeinthetrendofminiaturizingelectronics.Thishasinsubstrateviathelayer-by-layer(LbL)technique,however,atturnshiftedtheattentiontomaterialshavingpotentialthecostofaprefabricatedCu-TCNQthinfilmactingastheapplicationsintherealmofultrahighdensityinformation7sacrificialtemplate.ThefruitionofgeneratingaAg-TCNQ1−3storageandmemorydevices.Inthisregard,charge-transferthinfilmonafunctionalizedAusubstratemotivatedustocomplexesbasedon7,7,8,8-tetracyanoquinodimethaneinvestigatethefactorshinderingthedevelopmentofamore(TCNQ)resultinginM-TCNQcoordinationpolymers(Mfacilewet-chemicalrouteinvolvingAgsaltsandTCNQ.=Cu,Ag,Mn,Fe,Co,andNi)havereceivedrenewedHerein,forthefirsttime,wepresentadirectLbLgrowthof4interest.However,majoremphasishasbeenlaidonCu-adenseanduniformAg-TCNQthinfilmonathiolTCNQandAg-TCNQbyvirtueoftheirhighstructuralfunctionalizedAusubstrate.AnoptimalpHvalueoftheflexibility,semiconductingnature,reproducibleelectricalandAg(I)solutionwasfoundtobecriticalinachievingtheAg-5−8opticalpropertiesaswellasmemoryeffects.TCNQthinfilm.OurresultsnotonlyhighlighttheimportanceDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at07:52:06(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.Ag-TCNQandCu-TCNQcanundergoreversibleandofpHinLbLgrowthbutalsoopenupanunexploredavenueofbistableswitchingofelectricalconductivityfromahightolowpHintheemergingdomainofthinfilmsofmetal−organicsimpedancestateinducedbyanelectricfieldand/oropticaland/orcoordinationpolymers(CPs),ingeneral.5,6excitation.AsforthethermallydrivenresistiveswitchingFabricationofaAg-TCNQthinfilmisschematicallyphenomenoninvolvingAg-TCNQandCu-TCNQthinfilms,depictedinFigure1.Briefly,aAusubstrate(functionalizeditwasascribedtothealterationoftheSchottkybarrieratthewithaself-assembledmonolayer(SAM)ofmercaptoundeca-metal−semiconductorinterfacebythermalenergy(annoicacid(MUDA))wassequentiallydippedintoAgOAc7interfacialphenomenon).Suchremarkableattributesmake(silveracetate)andTCNQsolutionsinethanoltogrowtheAg-TCNQthinfilmprototypestomoleculardevicesandAg-TCNQthinfilmatambientconditions(seetheSupportingstimulatesawiderangeofsyntheticprotocolstobedevised.Theserangedfromspontaneouscrystallization,electrolysis,electro-crystallization,photocrystallizationtovacuumvaporReceived:October26,2020depositionandthermalvapordepositionamongahostofAccepted:December1,2020others.4−6,9−17OfallthetechniquesdevelopedforthePublished:December9,2020fabricationofthinfilms,growthofAg-TCNQonanon-Agsubstratewasachallengethatwassuccessfullyovercomeinthe14,17seminalworkbyBondandco-workers.Morerecently,we©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c0322910548J.Phys.Chem.Lett.2020,11,10548−10551

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(002),(022),and(004)planesandarecharacteristicofa22phase-IAg-TCNQstructure.DirectformationofAg-TCNQthinfilmsonMUDAfunctionalizedAusubstratewithvariousAg-precursorsaltssuchasAgOAc,AgNO3,AgBF4,andAgClwasattemptedthroughtheLbLmethod(FigureS1).Interestingly,growthoftheAg-TCNQthinfilmwasachievedonlywiththeAgOAcsolution.Suchanobservationledustospeculatetheroleofthecounterion(acetate)asamodulatorforthegrowthofthethinfilm.Inordertofurtherinvestigatethesame,somecontrolexperimentswereperformedbyemployingtheLbLapproachundersimilarconditions.However,whenacetatesaltsofdifferentmetalssuchasCo(II),Ni(II),andMn(II)wereused,thecorrespondingM-TCNQthinfilmswerenotformed(FigureS2).Eventheadditionofaceticacid(CH3COOH)tothesolutionofAgNO3didnotresultintheformationofAg-TCNQthinfilm(FigureS3),therebyrulingoutthepossibilityoftheacetateionactingasamodulator.Surprisingly,formationofaAg-TCNQthinfilmwasconsistentlyobservedwhensodiumacetate(CH3COONa)wasaddedintotheFigure1.Schematicsofthelayer-by-layer(LbL)assemblyofaAg-solutionsofAgNO3andAgBF4,whichwerewell-characterizedTCNQthinfilmontheAusubstratefunctionalizedwithaself-byPXRDandFE-SEMtechniques(FigureS4).Therefore,assembledmonolayer(SAM).whatabouttheroleofpHoftheAg(I)solutionanditsimpactinassistingtheformationofAg-TCNQthinfilmviaLbL?Informationforexperimentaldetails).NotethatineachLbLTable1summarizesthecorrespondingpHvaluesofthegrowthcycle,multilayersofAg-TCNQweredeposited,whichrespectiveAg(I)solution(thevalueswerefurtheradjustedbyisconsistentwithourearlierobservationsonthinfilmsofCPs,7,18−21ingeneral.VisualinspectionofthebarefunctionalizedTable1.DirectRelationshipoftheApproximatepHValueAuandtheAg-TCNQthinfilmrevealedadistinctchangeinoftheAg(I)SolutionwiththeFormationofaAg-TCNQcolorfromgoldentodarkblue(Figure1).ThinFilmSurfacemorphologiesoftheAg-TCNQthinfilmwererecordedbyfield-emissionscanningelectronmicroscopy(FE-metalsaltpHobservationSEM)andrevealeduniformcoverageofAg-TCNQontheAuAgNO34.9nothinfilmsubstrate(Figure2a).ThewatercontactangleevidencedaAgOAc8.8thinfilmformedhighlyhydrophobicsurface,matchingwellwithapreviousAgBF44.8nothinfilm7report(Figure2a,inset).Furthermore,out-of-planeX-rayAgCl3.9nothinfilmdiffraction(XRD)patternsexhibitedthehighlycrystallineAgNO3+KOH7.3thinfilmformed22natureoftheAg-TCNQthinfilm(Figure2b).DiffractionAgOAc+CH3COOH4.4nothinfilmpeaksappearingat10.25°,14.5°,and21.5°correspondtoAgNO3+CH3COONa7.9thinfilmformedAgBF4+CH3COONa7.6thinfilmformedKOHorCH3COONaorCH3COOH).FromtheabovetableitcanbeinferredthatmetalsolutionshavingpH≥6.5supportstheformationofAg-TCNQthinfilms.Toprovethishypothesis,twocontrolexperimentswereperformed:(i)inthefirstexperiment,CH3COOHwasaddedtoAgOAcsolutiontoreduceitspHvaluewhile(ii)inthesecondexperiment,KOHwasaddedtoAgNO3toincreasethepHvalue(Figure3).WewouldliketopointoutherethatwhenonlyAgOAcsolutionwasusedasthesourceofAg(I)ion,thinfilmformationofAg-TCNQtookplace;however,uponadditionofCH3COOHtotheAgOAcsolution,nofilmformationwasobserved,whichcouldbeduetothereductionofthepHvalueoftheAg(I)solution.Also,onlytheAgNO3solutiondidnotallowformationoftheAg-TCNQthinfilm;however,uponadditionofKOHtotheAgNO3solution,formationofauniformAg-TCNQthinfilmtookplace,perhapsduetothemodifiedpHvalueoftheAg(I)solution.VariouscomplementaryexperimentsclearlysuggestacrucialroleofpH(≥6.5)indictatingthegrowthofAg-TCNQthinFigure2.(a)FE-SEMimageoftheAg-TCNQthinfilmobtainedfilm.TheseresultsalsoemphasizethefactthatmetalsaltwiththeinvolvementofAgOAcsolution(inset:contactangleofaprecursorsarenottheabsolutemarkersdictatingthefeasibilitywaterdroplet).(b)PXRDpatternofourAg-TCNQthinfilm.ofthethinfilmformation,rathermodulationofthepHofthe10549https://dx.doi.org/10.1021/acs.jpclett.0c03229J.Phys.Chem.Lett.2020,11,10548−10551

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTheprimaryroleofpHisthereforehypothesizedtodeprotonatecarboxylicacid(fromMUDAoftheSAM)moietiesandtoprovidecoordinationsitesfortheAg(I)ions,facilitatingnucleationwithgrowthofAg-TCNQcrystallitesonthefunctionalizedAusubstrate.TheherepresentedgrowthofAg-TCNQthinfilmsisnotaspreciseascoveringtheentiresurfacewithonelayerofAg-TCNQinonecycleofLbL,asinourearlierstudiesontheLbLgrowthofCu-TCNQthinfilms7,18,19,21undersimilarconditions.ThatiswhyweneedtokeepthepHoftheAg(I)solutionat≥6.5andcontinueLbLcyclesuntilthesurfaceiscompletelycoveredwithAg-TCNQcrystallitesfollowedbyformationofathinfilminsubsequentcycles.Interestingly,uponmixingtheTCNQsolutionwiththeAgOAcsolution(FigureS9)aswellastheTCNQsolutionwiththeAgNO3solution(FigureS10),solidAg-TCNQwasconsistentlyisolatedfromboththemixtures(FigureS9andFigureS10).Thus,apartfromtheroleofpHinprimarilyprovidingtheseedinglayersofAg-TCNQ,thereseemtobeadditionalimportantrolesofpHinthegrowthofaAg-TCNQthinfilmatthesolid−liquidinterface,whichneedsfurtherexploration.Insummary,thepHvalueofAg(I)solutionhasbeenrealizedtobeacriticalfactorforthedirectgrowthofAg-TCNQthinfilmonnon-AgsubstrateslikefunctionalizedAuFigure3.(a)FE-SEMimageoftheAg-TCNQthinfilmobtainedviatheLbLmethod.StartingfromdifferentAg(I)precursorwiththeinvolvementofAgNO3+KOHsolution(insets:contactsalts,uniformanddensethinfilmsofAg-TCNQcouldbeangleofwaterandPXRDpattern).(b)FE-SEMimageshowingnoobtainedonlyifthepHoftheAg(I)solutionwasmaintainedformationoftheAg-TCNQthinfilmwiththeinvolvementofAgOAcat≥6.5,whilethesamesaltscouldnotyieldathinfilmata+CH3COOHsolution(insets:contactangleofawaterdropletandmuchlowerpH.OurpH-assistedgrowthofAg-TCNQthinPXRDpattern).filmnotonlyshedsnewlightonanunexploreddomaininthefieldofM-TCNQthinfilmsbutalsoopensupanewavenuemetalionsolutionholdsthekeytoit.Sofarintheliterature,forthefabricationofthinfilmsofmetal−organicsingeneraltheeffectsofpHonthedimensionalityandgrowthofvianovelchemistryatsolid−liquidinterface.coordinationpolymerslikemetal−organicframeworks23(MOFs)areexplored.Tothebestofourknowledge,the■ASSOCIATEDCONTENTpresentworkisthefirstreportonapH-basedgrowthstudyin*sıSupportingInformationthedomainofM-TCNQthinfilms.TheSupportingInformationisavailablefreeofchargeatModulationofpHoftheAg(I)solutioncouldalsobehttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03229.carriedoutbyaddingCu(II)salts.TheuseofamixedmetallicExperimentaldetails,FE-SEMandopticalimages,PXRDsaltsolutioncomprisingCu(OAc)2andAgNO3(outlinedinandRamanspectra,I−Vdata,andexperimentsinthedetailintheSupportingInformation)ledtothealmostliquidphase(PDF)exclusiveformationofaAg-TCNQthinfilmviatheLbLmethod(FigureS5),whichcouldeitherbeduetoreactivitydifference(Ag(I)versusCu(II))orapHvalueof6.5.To■AUTHORINFORMATIONfurtherstrengthenourclaimonthemodulationofthepHCorrespondingAuthorvalue,amixtureofCu(NO3)2andAgOAcwasexplored.NirmalyaBallav−DepartmentofChemistry,IndianInstituteRemarkably,noAg-TCNQthinfilmformationwasobservedofScienceEducationandResearch(IISER),Pune411008,duetosignificantloweringofthepHvalueofthemixedIndia;orcid.org/0000-0002-7916-7334;solutionto3.1(FigureS6).Furthermore,wementionthattheEmail:nballav@iiserpune.ac.inthinfilmsofAg-TCNQpreparedfromamixed(Cu(II)+Ag(I))solutionwerefoundtobealmostidenticaltothoseAuthorsobtainedbythedirectgrowthusingAgOAcsolution(FigureAswaniSathishLathika−DepartmentofChemistry,IndianS7).Specifically,temperature-dependentcurrent−voltage(I−InstituteofScienceEducationandResearch(IISER),PuneV)measurementsconsistentlyrevealedthermallydriven411008,India7resistiveswitchingbehavior(FigureS8).ThepresenceofShammiRana−DepartmentofChemistry,IndianInstituteofAgnanoparticlesinourAg-TCNQthinfilms(aswellasAg-ScienceEducationandResearch(IISER),Pune411008,TCNQsoliddiscussedbelow)isconsistentwithpreviousIndia7,16reports.AnupamPrasoon−DepartmentofChemistry,IndianInstitutepKavaluesofsimplealiphaticacids(MUDAinthepresentofScienceEducationandResearch(IISER),Pune411008,study)usuallyliewithin4−5.TakinganaverageofpKavalueIndiaof4.5,fromtheHenderson−Hasselbalchequation(pH=pKaPoojaSindhu−DepartmentofChemistry,IndianInstituteof+log10([Salt]/[Acid])),onecaneasilyestimatethatalmostallScienceEducationandResearch(IISER),Pune411008,thecarboxylicacidmoietieswillbedeprotonatedatpH≥6.5.India10550https://dx.doi.org/10.1021/acs.jpclett.0c03229J.Phys.Chem.Lett.2020,11,10548−10551

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterDebashreeRoy−DepartmentofChemistry,IndianInstitute(16)Zheng,W.;Li,Z.;Yang,F.;Song,X.;Zhang,H.;Liu,Y.;Wang,ofScienceEducationandResearch(IISER),Pune411008,C.Asimpleandeffectiverouteforone-dimensionalAg-TCNQmetal-Indiaorganicmicrostructures.Mater.Lett.2008,62,1448−1450.(17)Zhao,C.;MacFarlane,D.R.;Bond,A.M.ModifiedCompletecontactinformationisavailableat:ThermodynamicsinIonicLiquidsforControlledElectrocrystalliza-https://pubs.acs.org/10.1021/acs.jpclett.0c03229tionofNanocubes,Nanowires,andCrystallineThinFilmsofSilver−Tetracyanoquinodimethane.J.Am.Chem.Soc.2009,131,16195−Notes16205.Theauthorsdeclarenocompetingfinancialinterest.(18)Rana,S.;Rajendra,R.;Dhara,B.;Jha,P.K.;Ballav,N.HighlyHydrophobicandChemicallyRectifiableSurface-AnchoredMetal-OrganicFrameworkThin-FilmDevices.Adv.Mater.Interfaces2016,■ACKNOWLEDGMENTS3,1500738.FinancialsupportfromSERB(EMR/2016/001404)and(19)Rana,S.;Sindhu,P.;Ballav,N.PerspectiveontheInterfacialReductionReaction.Langmuir2019,35,9647−9659.IISERPuneisthankfullyacknowledged.A.S.L.,S.R.,and(20)Rana,S.;Prasoon,A.;Sadhukhan,P.;Jha,P.K.;Sathe,V.;D.R.thankIISERPune,A.P.thanksK.V.P.Y.,andP.S.thanksBarman,S.R.;Ballav,N.SpontaneousReductionofCopper(II)toCSIR(India)forprovidingResearchFellowships.Copper(I)atSolid−LiquidInterface.J.Phys.Chem.Lett.2018,9,6364−6371.■(21)Sindhu,P.;Prasoon,A.;Rana,S.;Ballav,N.EmergentInterfaceREFERENCESinHeterostructuredThinFilmsofCu(II)andCu(I)Coordination(1)Huang,Y.;Duan,X.;Cui,Y.;Lauhon,L.J.;Kim,K.-H.;Lieber,Polymers.J.Phys.Chem.Lett.2020,11,6242−6248.C.M.LogicGatesandComputationfromAssembledNanowire(22)O’Kane,S.A.;Clerac,R.;Zhao,H.;Ouyang,X.;Galán-́BuildingBlocks.Science2001,294,1313−1317.Mascaros,J.R.;Heintz,R.;Dunbar,K.R.NewCrystallinePolymerś(2)Bachtold,A.;Hadley,P.;Nakanishi,T.;Dekker,C.LogicofAg(TCNQ)andAg(TCNQF4):StructuresandMagneticCircuitswithCarbonNanotubeTransistors.Science2001,294,1317−Properties.J.SolidStateChem.2000,152,159−173.1320.(23)Pan,L.;Frydel,T.;Sander,M.B.;Huang,X.;Li,J.TheEffect(3)Fuhrer,M.S.;Kim,B.M.;Dürkop,T.;Brintlinger,T.High-ofpHontheDimensionalityofCoordinationPolymers.Inorg.Chem.MobilityNanotubeTransistorMemory.NanoLett.2002,2,755−759.2001,40,1271−1283.(4)Nafady,A.;O’Mullane,A.P.;Bond,A.M.Electrochemicalandphotochemicalroutestosemiconductingtransitionmetal-tetracyano-quinodimethanecoordinationpolymers.Coord.Chem.Rev.2014,268,101−142.(5)Potember,R.S.;Poehler,T.O.;Cowan,D.O.ElectricalswitchingandmemoryphenomenainCu-TCNQthinfilms.Appl.Phys.Lett.1979,34,405−407.(6)Gu,Z.;Wu,H.;Wei,Y.;Liu,J.Mechanismgeneratingswitchingeffectsincopper-TCNQandsilver-TCNQfilms.J.Phys.Chem.1993,97,2543−2545.(7)Rana,S.;Prasoon,A.;Jha,P.K.;Prathamshetti,A.;Ballav,N.ThermallyDrivenResistiveSwitchinginSolution-ProcessableThinFilmsofCoordinationPolymers.J.Phys.Chem.Lett.2017,8,5008−5014.(8)Mukherjee,B.;Mukherjee,M.;Park,J.-e.;Pyo,S.High-PerformanceMolecularMemoryDeviceUsingAg−TCNQCrystalsGrownbySolutionProcess.J.Phys.Chem.C2010,114,567−571.(9)Duan,H.;Cowan,D.O.;Kruger,J.ElectrochemicalStudiesoftheMechanismoftheFormationofMetal-TCNQCharge-TransferComplexFilm.J.Electrochem.Soc.1993,140,2807−2815.(10)Hoagland,J.J.;Wang,X.D.;Hipps,K.W.CharacterizationofCu-CuTCNQ-Mdevicesusingscanningelectronmicroscopyandscanningtunnelingmicroscopy.Chem.Mater.1993,5,54−60.(11)Oyamada,T.;Tanaka,H.;Matsushige,K.;Sasabe,H.;Adachi,C.SwitchingeffectinCu:TCNQchargetransfer-complexthinfilmsbyvacuumcodeposition.Appl.Phys.Lett.2003,83,1252−1254.(12)Cao,G.;Ye,C.;Fang,F.;Xing,X.;Xu,H.;Sun,D.;Chen,G.ScanningelectronmicroscopyinvestigationofCu−TCNQmicro/nanostructuressynthesizedviavapor-inducedreactionmethod.Micron2005,36,267−270.(13)Liu,Y.;Ji,Z.;Tang,Q.;Jiang,L.;Li,H.;He,M.;Hu,W.;Zhang,D.;Jiang,L.;Wang,X.;Wang,C.;Liu,Y.;Zhu,D.Particle-SizeControlandPatterningofaCharge-TransferComplexforNanoelectronics.Adv.Mater.2005,17,2953−2957.(14)O’Mullane,A.P.;Fay,N.;Nafady,A.;Bond,A.M.PreparationofMetal−TCNQCharge-TransferComplexesonConductingandInsulatingSurfacesbyPhotocrystallization.J.Am.Chem.Soc.2007,129,2066−2073.(15)Xiao,K.;Tao,J.;Puretzky,A.A.;Ivanov,I.N.;Retterer,S.T.;Pennycook,S.J.;Geohegan,D.B.SelectivePatternedGrowthofSingle-CrystalAg−TCNQNanowiresforDevicesbyVapor−SolidChemicalReaction.Adv.Funct.Mater.2008,18,3043−3048.10551https://dx.doi.org/10.1021/acs.jpclett.0c03229J.Phys.Chem.Lett.2020,11,10548−10551

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭