《Crystals - Zhang et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterSuperconductivityandHigh-PressurePerformanceof2DMo2CCrystals##JunliZhang,ZhenCao,XinHe,WenhaoLiu,YanWen,LuigiCavallo,WencaiRen,HuimingCheng,andXixiangZhang*CiteThis:J.Phys.Chem.Lett.2021,12,2219−2225ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Two-dimensional(2D)materialshaveattractedsignificantattentionfortheirabilitytosupportnovelmagneto-electricaltransportandtheiropticalandmagneticproperties,ofwhichtheirsuperconductivityisparticularlyofinterest.Herewereportonthebehaviorofsuperconductivityin2DMo2Ccrystalswhenhydrostaticpressureisapplied,whichhasnotyetbeendescribedintheliterature.Wefoundthatthelocalizationofboundaryatomsdisorder-inducedCooperpairscansuppressthesuperconductingtransitiontemperature(Tc)aseffectivelyasamagneticfieldandcurrent.WeobservedthattheTcinitiallydecreasedasthepressureincreasedto1.75GPabutthenbegantoincreaseasthepressureincreasedfurtherto2.5GPa.Ourdensityfunctionaltheorycalculationsrevealedthatthisbehaviorwaslinkedtothemodulationofthestrengthoftheelectron−phononcouplingandtheelectronproperty,whichwastriggeredbycompressionofthelatticeunderhighpressure.Weattributedtheinflectionpointinthehydrostaticpressure-dependentTccurvetothestructuralphasetransitionofMo2Cfromahexagonaltoanorthorhombicstructure.ThisworkpresentsanewavenueforthestudyofthesuperconductivityofMo2C,whichcanbeextendedtoapplytoother2Dsuperconductorstomodulatetheirelectronicstates.22Two-dimensional(2D)materials,basedonavarietyofgatedMoS2transistorsistuned.Thus,exploringandtuningchemicalcomponents,suchastransitionmetalchalcoge-superconductivityin2Dmaterialsisafundamentalresearch1,23−56,78nides,carbides,nitrides,orcarbonitrides,havetopicofgreatinterestinthefieldsofcondensedmatterphysicsattractedconsiderableattentionsincethediscoveryofandmaterialsscience.9graphene.These2DmaterialshaveseveralappealingRecently,theapplicationofexternalpressurehasbeen10,11properties,suchasanultralowweight,ahighYoung’semployedtomodulatethephysicsofsuperconductors;i.e.,theDownloadedviaUNIVOFNEWMEXICOonMay16,2021at15:04:50(UTC).modulus,highflexibility,opticaltransparency,outstandingcrystallinestructure,electronicstate,andphononfrequencycarriermobility,andalongspin-diffusionlengthsuitableforcanbeeffectivelychangedbyapplyingexternalpressure.ForSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.spintronicsdevices.2Dsuperconductorshavesimilarlygainedexample,studieshaveshownthatthecriticaltemperature(Tc)particularinterestduetotheirattractivephysicalpropertiesinofsuperconductivityandthechargedensitywave(TCDW)canlow-dimensionalelectronicsystems,includingsuperconductingbeincreasedbymorethananorderofmagnitudewhenhighfluctuations,BKT(Berezinsiii−Kosterlitz−Thouless)transi-pressureisappliedto2H-TaSand2H-TaSe.23Besides,the22tions,andquantumphasetransitions(QPTs)atzerosuperconductivitycanbeachievedinsemiconductive2H-12,13temperatures,amongothers.EnormouseffortshavebeenMoSatanultrahighpressure.24Aninversecorrelation2devotedtostudying2DsuperconductivitysincethediscoverybetweenquasiparticlemassandTchasalsobeendemonstrated14−16ofsuperconductivityinPbandSnthinfilms.Forexample,whenhighpressureisappliedtoYBaCuO.25However,the248‑δQPTsbetweenthesuperconductingandinsulatingphasewasbehavioroftransitionmetalcarbides(TMCs)underhydro-discoveredinasuperconductingthinfilmwithathicknessin17staticpressurehasnotyetbeendescribed.Thus,weaddresstherangeof0.3−10nm.A“dirty-boson”modelwas18,19proposedtostudythiseffect.AlargeRashbaspin-splitting,causedbyspin−orbitinteractions,wasalsofoundin2DReceived:January8,2021superconductivemetals.20Asaresult,interfacialsuper-Accepted:February22,2021conductivitywasrealizedatthepolarizedinterfaceofPublished:February26,202113,21LaAlO3/SrTiO3film.Furthermore,studieshaveindicatedthatthein-planecriticalfieldcouldbefarbeyondthePauliparamagneticlimitwhenthesuperconductivityoftheionic-©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c000712219J.Phys.Chem.Lett.2021,12,2219−2225
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.MorphologyandmicrostructureofMo2Ccrystal:(a)opticalimage;(b)EDXmap;(c)atom-resolvedHAADF-STEMmicrograph;(d)crystallinestructure;(e)AFMimage;(f)thethicknessoftheMo2Ccrystal.thisknowledgegapbystudyingthehighpressure-relatedphysicsof2DTMCs.ManyTMCs(suchasMo2C,W2C,WC,TaC)aresuperconductorsandcanbereadilypreparedbychemicalvapordeposition(CVD),whichprovidestheidealplatformtoinvestigatesuperconductivityandnewphysicsinalow-dimensionalmaterial.Inthiswork,westudythesuperconductivityof2DMo2Cwhileapplyingexternalpressure.Wedemonstratethattheboundaryatomsdisorder,themagneticfield,andthecurrentcanaffectthesuperconductingbehavior.Specifically,weshowthattheTccanbemodulatedbyapplyinghighhydrostaticpressure.Finally,weemploydensityfunctionaltheory(DFT)calculationstoexplorethisphenomenonincloserdetail.Theprepared2DlayeredMo2Ccrystalshaveaperfecthexagonalshapewithanedgelengthof7μmandasmoothsurface,asseenintheopticalimageinFigure1a.TheuniformdistributionofMoandCatomsintheMo2CnanosheetwasverifiedbytheSTEM-EDXmapping(Figure1b,FigureS1),inwhichthemolarratioofMoandCwasabout2:1.FromtheFigure2.TransportpropertiesoftheMo2Ccrystalatzeropressure.atom-resolvedHAADF-STEMimage(Figure1c),wecon-(a)Temperaturedependenceoflongitudinalresistance(R(T))measuredat20μA.TheinsetistheopticalimageoftheMo2CfirmedthatourMo2Cnanosheetshadahexagonalcrystallinenanodeviceusingthefour-probemeasurements.Thethicknessofthestructureandthattheirgrowthdirectionwasalongthe[100]Mo2Cis9.2nm.(b)NormalizedR(T)curvesoftheMo2C-baseddirection.Figure1dclearlyshowsthearrangementofthedevicewithdifferentthicknessesmeasuredat20μAwithoutaatomsinahexagonalcrystallinestructure,inwhichthesmallermagneticfield.(c)R(T)curvesoftheMo2CdeviceunderdifferentradiusCatomsintercalatedintothelargerradiusMoatomstoperpendicularmagneticfieldsforthedevicewith9.2nmthickMo2C.forma2Dinterfilledstructure.Inaddition,wefurtherverified(d)R(T)curvesoftheMo2CdevicemeasuredatdifferentcurrentsthehighqualityoftheMo2Ccrystalsbytheatomicimageforthedevicewith7.4nmthickMo2C.(Figure1c),wherenoobviousdefectsorimpuritieswereobserved.BasedontheAFMimagesinFigure1e,f,wefoundmagnifiedR(T)curvefortheMo2Cnanosheet,revealingthatthatthethicknessofthethickestMo2CnanosheetwasstilltheMo2CcrystalbecamesuperconductingatTc=4.5K.Thismoderatelyuniformataround11.8nm.apparentsuperconductivityisrelatedtotheCooperpairsthatWefirststudiedthesuperconductivityoftheMo2Cwerecoupledbyelectron−phononinteractionsneartheFerminanosheetbyvaryingthethicknessandmagneticfield.Figurelevel.NotethattheBKTphasetransition(Tϕ)occurredbelow32ashowsthetemperaturedependenceoftheresistance(R(T))Tc(Tϕ 2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.High-pressuretransportperformanceoftheMo2Ccrystal.(a)R(T)curvesof9.2nmthickMo2Ccrystalunderdifferentpressuresrangingfrom0to2.5GPa.(b)MagnifiedviewofR(T)curvesaroundTc.(c)VariationofTcunderincreasinghydrostaticpressureupto1.75GPa.(d)Schematicstructureofthephase-transitionprocessunderhighpressure.(e)VariationofTcunderincreasinghydrostaticpressurefrom0to2.5GPa,andthecorrespondingcrystalstructure.Figure4.ElectronicstateoftheMo2Ccrystalatdifferenthydrostaticpressures:(a)calculateddensityofstate(DOS),(b)phonondensityofstate(PHDOS),and(c)Eliashbergspectralfunctionα2F(w)forhexagonalMoCundervariouspressures;(d)DOS,(e)PHDOS,and(f)Eliashberg2spectralfunctionα2FfororthorhombicMoCundervariouspressures.2theMo2Cnanosheetsreducedfrom11.8to6.6nm.ThisWealsostudiedtheeffectofamagneticfieldonthephenomenonwasalsoobservedintheCo-basedJosephsonsuperconductingbehavioroftheMo2Cnanosheet.TheR(T)junction,272H-NbSe,28,29andNbS,30highlightingtheeffectcurvesoftheMo2Cunderdifferentmagneticfieldsare22ofthicknesson2Dsuperconductivity.ThesuppressionofpresentedinFigure2c,wheretheappliedmagneticfieldwassuperconductivityinthicker2Dmaterialsmaybeduetotheperpendiculartothedeviceplane.WefoundthattheTcshiftedtoalowertemperature,andthetransitiontemperaturerangedisorder-inducedCooperpairslocalization,theunboundbroadenedasthemagneticfieldincreased.Weproposetwovortex−antivortexpairs(i.e.,asindicatedbytheBKT26,31mechanismstoexplainthisobservation.Thefirstmechanismmechanism),orthereductioninCoulombscreening,involvesthebreakingoftheorbitalpair,wherethemagneticbecausethinnerMo2Ccrystalsaremoredisorderedduetothevorticespenetratethesuperconductors,andthegeneratedhigherratioofboundaryatoms.Here,weattributetheLorentzforcethenbreakstheCooperpairapart.ThesecondsuppressedTcintheMo2Ccrystalstothedisorder-inducedmechanisminvolvesZeemansplitting,wherethestrongCooperpairslocalizationduetothevortex−antivortexpairsmagneticfieldbreaksthepairedelectronsinthespin-singlet.thatappearbelowTc(Tϕ 3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettertheself-magneticfieldplayedthesameroleastheexternalhydrostaticpressure.Thetotalenergyoftheorthorhombicmagneticfield.NotethatthesuperconductingstateofMo2CMo2CismuchlowerthanthehexagonalMo2C(Figure3e).waswellmaintainedinFigure2duntilthecurrentincreasedtoThus,thisstructuralphase-transitionprocesscanbereasonably1mA,demonstratingthatthemaximumcurrentunderwhichexpectedinthehexagonalMo2CfromanenergydynamicstheMo2Ccanmaintainzeroresistanceishigh.Ourresultsperspective.Meanwhile,asimilarphasetransitionwasalsoindicatethatMo2CsuperconductorshavebroadpotentialobservedwhenthehexagonalMo2Cwasirradiatedbyan3235applicationsindevicesbasedontheJosephsoneffectandelectronbeaminTEM.Thisphenomenonalsosupportsourfaultcurrentlimiters,amongothers.Wefurtherstudiedthehypothesisthatthestructuralphasetransitionexistsinsuperconductivityofthe9.2nmthickMo2CcrystalathighhexagonalMo2C.pressuretoexploretheimpactofpressureontheelectronicWefurtherstudiedthevariationoftheelectronicstateunderstructure.Thetemperature-dependentresistancemeasuredatvaryingpressureconditionsusingDFTsimulations.IncreasingdifferentpressuresispresentedinFigure3a.WefoundthatthethehydrostaticpressureleadstotheshrinkingofthelatticeTcdecreasedgraduallyfrom4.13to3.84Kwhenthepressureconstant,anditcanfurtherinducethevariationoftheincreasedfrom0to1.75GPa.Figure3cshowsthealmost36electronicproperties.Thepressure-dependentdensityoflinearvariationofTcwithpressureatarateof0.166K/GPainstate(DOS)inFigure4apresentsthistrend:bothvalencethispressureregion.Thisfeatureissimilartothatfoundinbandmaximum(VBM)andconductionbandminimumtraditionalsuperconductors.ThevariationofTcintermsofthe(CBM)haveablueshifttowardthehigherenergeticstatespressurecanbedescribedfurtherbyMcMillian’sformulawhenwiththeincrementofpressure.Moreover,theFermilevelcan33,34Tϕ 4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettersuperconductors,suchasthe2Dtransitionmetalcarbides,α()ω={ijj4πyzz[+−()/εε221/2ε]2}1/2transitionmetalnitrides,transitionmetalcarbonitrides,jz121kλ{(3)transitionmetalchalcogenides,amongothers.TheMo2CcrystalsweregrownonaCufoilsubstrateusingwhereε1andε2aretheaveragedrealandimaginarypartsoftheCVDmethoddescribedinthepreviousresearch.3Thehighthefrequency-dependentdielectricfunction,respectively.ThepurityCufoil(99.5%)wasplacedontopofaMofoil(99.5%)phono-spectrumwascalculatedusingthefinite-difference40ofthesamesize,wheretheCufoilactedassubstrateandthemethodthroughanopen-sourcePhonopypackage,andtheMofoilasthesource.Thesamplesweretransferredintoa1in.microperturbationoftheatomicpositionswasperformedonatubefurnaceandheatedto1085°Cunderaflowof200sccm2×2×3supercell.H2.Aflowof0.35sccmCH4wasintroducedasthecarbonsourcetogrowtheMo2Ccrystal,andthewholereaction■ASSOCIATEDCONTENTprocesswascarriedoutatambientpressure.Thegrowthtime*sıSupportingInformationwascontrolledbetween2and50min,fortuningthesizeandTheSupportingInformationisavailablefreeofchargeatthicknessofthepreparedMo2Ccrystal.Thesampleafterhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00071.growingwasthenquenchedtoroomtemperaturetoavoidtheElementalmapsandEDXspectrumoftheobtainedimpurityphase.Mo2Csample(PDF)TheMo2CnanosheetwastransferredtoaTEMgridoraSi/SiO2substrateusingthepolymerstampmethodreportedpreviously.3Thecrystalstructureandchemicalcompositionof■AUTHORINFORMATIONtheMoCsinglecrystalswereanalyzedusingatransmissionCorrespondingAuthor2electronmicroscope(TEM,FEITitanThemisZ).Atom-XixiangZhang−DivisionofPhysicalScienceandEngineeringresolvedimageswererecordedbyaprobe-correctedhigh-angle(PSE),KingAbdullahUniversityofScienceandTechnologyannulardark-fieldscanningtransmissionelectronmicroscopy(KAUST),Thuwal23955-6900,SaudiArabia;(HAADF-STEM)withaprobesemiconvergentangleof23.5orcid.org/0000-0002-3478-6414;mradandacollectinganglerangeof60−200mrad.ToavoidEmail:xixiang.zhang@kaust.edu.sathebeamdamage,theatomicHAADF-STEMimageswereAuthorsobtainedbyanimageseriescomposedof20fastexposureJunliZhang−DivisionofPhysicalScienceandEngineeringimagesofthesameregion,followedbyapost-acquisition(PSE),KingAbdullahUniversityofScienceandTechnologyimagedistortioncorrectionandaveragingwiththededicated(KAUST),Thuwal23955-6900,SaudiArabia;Keyscript.ThechemicalcompositionofthesamplewasexaminedLaboratoryofMagnetismandMagneticMaterialsofthebytheenergy-dispersiveX-rayspectroscopy(EDX,BrukerMinistryofEducation,SchoolofPhysicalScienceandSuper-X)attachedonthemicroscopy.Thethicknessoftheα-Technology,LanzhouUniversity,Lanzhou730000,China;Mo2Cwasmeasuredbyatomicforcemicroscopy(AFM,orcid.org/0000-0002-8671-2417AsylumResearchMFP-3D).ThenanodevicesfortransportZhenCao−DivisionofPhysicalScienceandEngineeringmeasurementswerepreparedusingelectronbeamlithography(PSE),KingAbdullahUniversityofScienceandTechnology(EBL,Crestec-9000C).ThetransportpropertiesoftheMo2C(KAUST),Thuwal23955-6900,SaudiArabiadevicesweremeasuredusingaQuantumDesignphysicalXinHe−DivisionofPhysicalScienceandEngineering(PSE),propertiesmeasurementsystem(PPMS).Thehigh-pressureKingAbdullahUniversityofScienceandTechnologycellmodel(QuantumDesignHPC-33)wasusedforhigh-(KAUST),Thuwal23955-6900,SaudiArabiapressureelectricalmeasurements.TheDaphne7373oilwasWenhaoLiu−DivisionofPhysicalScienceandEngineeringusedasapressuremediuminthispressurecell.(PSE),KingAbdullahUniversityofScienceandTechnologyTheDFTcalculationswereperformedatthePerdew−(KAUST),Thuwal23955-6900,SaudiArabia37Burke−Ernzerhof(PBE)leveloftheexchangefunctionals.YanWen−DivisionofPhysicalScienceandEngineeringTheelectronsweredescribedusingtheProjectorAugmented-(PSE),KingAbdullahUniversityofScienceandTechnology38WaveMethod(PAW)implementedintheVASPpackage,(KAUST),Thuwal23955-6900,SaudiArabiawithanenergycutoffof450eV.TheBrillouinzonewasLuigiCavallo−DivisionofPhysicalScienceandEngineeringsampledusing3×3×3k-pointscenteredattheγpoint.The(PSE),KingAbdullahUniversityofScienceandTechnologyprototypicalmodelforthehexagonalstructureandortho-(KAUST),Thuwal23955-6900,SaudiArabia;rhombicstructure,theMo2Cstructurewasconstructedasorcid.org/0000-0002-1398-338Xfollows:thebulkhexagonalstructureMo2CwasrepresentedbyWencaiRen−ShenyangNationalLaboratoryforMaterialsasupercellcontaining2×2×2unitcells.TheorthorhombicScience,InstituteofMetalResearch,ChineseAcademyofstructureMo2CwasconstructedfollowingasimilarmethodSciences,Shenyang110016,China;orcid.org/0000-0003-outlinedinapreviousstudy39becausethecarbonatomsinthe4997-8870crystaldatabasewerehalf-occupied.ThecellparametersandHuimingCheng−ShenyangNationalLaboratoryforatomicpositionswereoptimizedusingthecriteriathatMaterialsScience,InstituteofMetalResearch,ChinesestipulatethattheHellmann−FeynmanforceoneachatomAcademyofSciences,Shenyang110016,China;waslessthan0.001eV/Å.Thereafter,toevaluatethevariationorcid.org/0000-0002-5387-4241oftheelectronicpropertiesduetotheappliedexternalCompletecontactinformationisavailableat:pressure,weconstructedfurthermodelswith1−4%shrinkagehttps://pubs.acs.org/10.1021/acs.jpclett.1c00071ofthecellparameters.Theatomicpositionswerefurtheroptimizedusingthesamecriteria.TheabsorptioncoefficientAuthorContributions#wascalculatedfromJ.L.J.andZ.C.contributedequallytothiswork.2223https://dx.doi.org/10.1021/acs.jpclett.1c00071J.Phys.Chem.Lett.2021,12,2219−2225 5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterAuthorContributions(15)Orr,B.G.;Jaeger,H.M.;Goldman,A.M.LocalSuper-J.L.Z.andX.X.Z.conceivedtheidea.J.L.Z.measuredtheconductivityinUltrathinSnFilms.Phys.Rev.B:Condens.Matterelectricalpropertiesandinterpretedtheresult.Z.C.andL.C.Mater.Phys.1985,32,7586−7589.performedtheDFTcalculations.X.H.,W.L.,andY.W.(16)Haviland,D.B.;Liu,Y.;Goldman,A.M.OnsetofprovidedelectricalmeasurementsupportduringPPMSSuperconductivityinTheTwo-DimensionalLimit.Phys.Rev.Lett.1989,62,2180−2183.characterization.W.C.R.andH.M.Csynthesizedthesingle(17)Liu,Y.;Haviland,D.B.;Nease,B.;Goldman,A.M.Insulator-crystalandhelpforthestructuralcharacterization.J.L.Z.wroteTo-SuperconductorTransitioninUltrathinFilms.Phys.Rev.B:themanuscript.X.X.Z.supervisedtheprojectandrevisedtheCondens.MatterMater.Phys.1993,47,5931−5946.manuscript.Alloftheauthorsparticipatedinthediscussionto(18)Fisher,M.P.A.QuantumPhase-TransitionsinDisordered2-interprettheresultsandhavegivenapprovaltothefinalDimensionalSuperconductors.Phys.Rev.Lett.1990,65,923−926.versionofthemanuscript.(19)Krauth,W.;Trivedi,N.;Ceperley,D.Superfluid-InsulatorFundingTransitioninDisorderedBosonSystems.Phys.Rev.Lett.1991,67,ThisworkwasfinanciallysupportedbytheKingAbdullah2307−2310.(20)Matetskiy,A.V.;Ichinokura,S.;Bondarenko,L.V.;Tupchaya,UniversityofScienceandTechnology(KAUST)OfficeofA.Y.;Gruznev,D.V.;Zotov,A.V.;Saranin,A.A.;Hobara,R.;SponsoredResearch(OSR),SaudiArabia,underAwardNo.Takayama,A.;Hasegawa,S.Two-DimensionalSuperconductorwithaOSR-2016-CRG5-2996andOSR-2018-CRG7−3717.GiantRashbaEffect:One-Atom-LayerTl-PbCompoundonSi(111).NotesPhys.Rev.Lett.2015,115,147003.Theauthorsdeclarenocompetingfinancialinterest.(21)Caviglia,A.D.;Gariglio,S.;Reyren,N.;Jaccard,D.;Schneider,T.;Gabay,M.;Thiel,S.;Hammerl,G.;Mannhart,J.;Triscone,J.M.■REFERENCESElectricfieldcontroloftheLaAlO3/SrTiO3interfacegroundstate.Nature2008,456,624−627.(1)Radisavljevic,B.;Radenovic,A.;Brivio,J.;Giacometti,V.;Kis,A.(22)Lu,J.M.;Zheliuk,O.;Leermakers,I.;Yuan,N.F.Q.;Zeitler,Single-layerMoS2transistors.Nat.Nanotechnol.2011,6,147−150.U.;Law,K.T.;Ye,J.T.Evidencefortwo-dimensionalIsing(2)Tongay,S.;Zhou,J.;Ataca,C.;Lo,K.;Matthews,T.S.;Li,J.;Grossman,J.C.;Wu,J.ThermallyDrivenCrossoverfromIndirectsuperconductivityingatedMoS2.Science2015,350,1353−1357.(23)Freitas,D.C.;Rodiere,P.;Osorio,M.R.;Navarro-Moratalla,towardDirectBandgapin2DSemiconductors:MoSe2versusMoS2.E.;Nemes,N.M.;Tissen,V.G.;Cario,L.;Coronado,E.;Garcia-NanoLett.2012,12,5576−5580.Hernandez,M.;Vieira,S.;etal.Strongenhancementofsuper-(3)Xu,C.;Wang,L.B.;Liu,Z.B.;Chen,L.;Guo,J.K.;Kang,N.;conductivityathighpressureswithinthecharge-density-wavestatesofMa,X.L.;Cheng,H.M.;Ren,W.C.Large-areahigh-quality2DultrathinMo2Csuperconductingcrystals.Nat.Mater.2015,14,2H-TaS2and2H-TaSe2.Phys.Rev.B:Condens.MatterMater.Phys.1135−1142.2016,93,184512.(4)Wang,L.B.;Xu,C.;Liu,Z.B.;Chen,L.;Ma,X.L.;Cheng,H.(24)Chi,Z.;Chen,X.;Yen,F.;Peng,F.;Zhou,Y.;Zhu,J.;Zhang,M.;Ren,W.C.;Kang,N.MagnetotransportPropertiesinHigh-Y.;Liu,X.;Lin,C.;Chu,S.;etal.SuperconductivityinPristineQualityUltrathinTwo-DimensionalSuperconductingMo2CCrystals.2H(a)-MoS2atUltrahighPressure.Phys.Rev.Lett.2018,120,037002.ACSNano2016,10,4504−4510.(25)Putzke,C.;Malone,L.;Badoux,S.;Vignolle,B.;Vignolles,D.;(5)Liu,Z.B.;Xu,C.;Kang,N.;Wang,L.B.;Jiang,Y.X.;Du,J.;Liu,Tabis,W.;Walmsley,P.;Bird,M.;Hussey,N.E.;Proust,C.;etal.Y.;Ma,X.L.;Cheng,H.M.;Ren,W.C.UniqueDomainStructureofInversecorrelationbetweenquasiparticlemassandTcinacuprateTwo-Dimensionalalpha-Mo2CSuperconductingCrystals.NanoLett.high-Tcsuperconductor.Sci.Adv.2016,2,No.e1501657.2016,16,4243−4250.(26)Zhao,W.;Wang,Q.;Liu,M.;Zhang,W.;Wang,Y.;Chen,M.;(6)Liu,T.C.;Pell,W.G.;Conway,B.E.;Roberson,S.L.BehaviorGuo,Y.;He,K.;Chen,X.;Wang,Y.;etal.EvidenceforBerezinskii-ofmolybdenumnitridesasmaterialsforelectrochemicalcapacitors-Kosterlitz-Thoulesstransitioninatomicallyflattwo-dimensionalPbComparisonwithrutheniumoxide.J.Electrochem.Soc.1998,145,superconductingfilms.SolidStateCommun.2013,165,59−63.1882−1888.(27)Khaire,T.S.;Khasawneh,M.A.;Pratt,W.P.,Jr.;Birge,N.O.(7)Chen,W.-F.;Iyer,S.;Iyer,S.;Sasaki,K.;Wang,C.-H.;Zhu,Y.;ObservationofSpin-TripletSuperconductivityinCo-BasedJoseph-Muckerman,J.T.;Fujita,E.Biomass-derivedelectrocatalyticsonJunctions.Phys.Rev.Lett.2010,104,137002.compositesforhydrogenevolution.EnergyEnviron.Sci.2013,6,(28)Lian,C.-S.;Si,C.;Duan,W.UnveilingCharge-DensityWave,1818−1826.Superconductivity,andTheirCompetitiveNatureinTwo-Dimen-(8)Naguib,M.;Mashtalir,O.;Carle,J.;Presser,V.;Lu,J.;Hultman,sionalNbSe2.NanoLett.2018,18,2924−2929.L.;Gogotsi,Y.;Barsoum,M.W.Two-DimensionalTransitionMetal(29)Xi,X.;Zhao,L.;Wang,Z.;Berger,H.;Forro,L.;Shan,J.;Mak,Carbides.ACSNano2012,6,1322−1331.K.F.Stronglyenhancedcharge-density-waveorderinmonolayer(9)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang,NbSe2.Nat.Nanotechnol.2015,10,765−769.Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Electricfieldeffect(30)Yan,R.;Khalsa,G.;Schaefer,B.T.;Jarjour,A.;Rouvimov,S.;inatomicallythincarbonfilms.Science2004,306,666−669.Nowack,K.C.;Xing,H.G.;Jena,D.Thicknessdependenceof(10)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;superconductivityinultrathinNbS2.Appl.Phys.Express2019,12,Katsnelson,M.I.;Grigorieva,I.V.;Dubonos,S.V.;Firsov,A.A.Two-023008.dimensionalgasofmasslessDiracfermionsingraphene.Nature2005,(31)Khestanova,E.;Birkbeck,J.;Zhu,M.;Cao,Y.;Yu,G.L.;438,197−200.Ghazaryan,D.;Yin,J.;Berger,H.;Forro,L.;Taniguchi,T.;etal.(11)Geim,A.K.;Novoselov,K.S.Theriseofgraphene.Nat.Mater.UnusualSuppressionoftheSuperconductingEnergyGapandCritical2007,6,183−191.TemperatureinAtomicallyThinNbSe2.NanoLett.2018,18,2623−(12)Saito,Y.;Nojima,T.;Iwasa,Y.Highlycrystalline2D2629.superconductors.Nat.Rev.Mater.2017,2,16094.(32)Dew-Hughes,D.Thecriticalcurrentofsuperconductors:an(13)Reyren,N.;Thiel,S.;Caviglia,A.D.;Kourkoutis,L.F.;historicalreview.LowTemp.Phys.2001,27,713−722.Hammerl,G.;Richter,C.;Schneider,C.W.;Kopp,T.;Ruetschi,A.S.;(33)Allen,P.B.;Dynes,R.C.Transitiontemperatureofstrong-Jaccard,D.;etal.Superconductinginterfacesbetweeninsulatingcoupledsuperconductorsreanalyzed.Phys.Rev.B1975,12,905−922.oxides.Science2007,317,1196−1199.(34)Brooks,N.L.J.R.S.J.S.HandbookofHigh-Temperature(14)Graybeal,J.M.;Beasley,M.R.LocalizationAndInteractionSuperconductivity:TheoryandExperiment;Springer:NewYork,2007.EffectsInUltrathinAmorphousSuperconductingFilms.Phys.Rev.B:(35)Liu,Z.;Fei,Z.;Xu,C.;Jiang,Y.;Ma,X.-L.;Cheng,H.-M.;Ren,Condens.MatterMater.Phys.1984,29,4167−4169.W.Phasetransitionandinsituconstructionoflateralheterostructure2224https://dx.doi.org/10.1021/acs.jpclett.1c00071J.Phys.Chem.Lett.2021,12,2219−2225 6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterof2Dsuperconductingalpha/betaMo2Cwithsharpinterfacebyelectronbeamirradiation.Nanoscale2017,9,7501−7507.(36)Luo,M.;Guo,S.Strain-controlledelectrocatalysisonmultimetallicnanomaterials.Nat.Rev.Mater.2017,2,17953.(37)Perdew,J.P.;Burke,K.;Ernzerhof,M.Generalizedgradientapproximationmadesimple.Phys.Rev.Lett.1996,77,3865−3868.(38)Blochl,P.E.Projectoraugmented-wavemethod.Phys.Rev.B:Condens.MatterMater.Phys.1994,50,17953−17979.(39)Yang,T.T.;Saidi,W.A.Tuningthehydrogenevolutionactivityofbeta-Mo2Cnanoparticlesviacontroloftheirgrowthconditions.Nanoscale2017,9,3252−3260.(40)Togo,A.;Tanaka,I.Firstprinciplesphononcalculationsinmaterialsscience.Scr.Mater.2015,108,1−5.2225https://dx.doi.org/10.1021/acs.jpclett.1c00071J.Phys.Chem.Lett.2021,12,2219−2225
此文档下载收益归作者所有