工程结构脆性断裂事故分析

工程结构脆性断裂事故分析

ID:8151695

大小:30.21 KB

页数:11页

时间:2018-03-07

工程结构脆性断裂事故分析_第1页
工程结构脆性断裂事故分析_第2页
工程结构脆性断裂事故分析_第3页
工程结构脆性断裂事故分析_第4页
工程结构脆性断裂事故分析_第5页
资源描述:

《工程结构脆性断裂事故分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、工程结构脆性断裂事故分析工程结构脆性断裂事故分析钢脆性和工程结构脆性断裂,周顺深编,上海科学技术出版社,1983自本世纪初以来,桥梁、船舶、压力窗口、管道、球罐、热电站发电设备的汽轮机和发电机转子以及其他设备曾发生脆性断裂事故。近20年来,随着焊接结构的大型化、钢结构截面增厚以及高强度钢的采用,容易引起焊接结构的脆断。例如由于压力窗口的大型化、厚截面或超厚截面压力窗口增多以及化工、石油工业中低温压力容器的使用,使脆断事故迭有发生。这些事故引起世界各国的关注,推动了对脆性断裂问题的研究,英、日本等国家成立专门机构对脆断事故进行分析和研究,并

2、提出了工程结构脆断防止措施。(一)压力容器脆性断裂压力容器断裂可能有塑性断裂、低应力脆性断裂和疲劳损坏等几种形式,特别是脆性断裂更引人注意。压力容器一旦发生脆性断裂,则将整个结构毁坏,其后果甚为严重。早基Shank曾对压力容器的破坏作了调查,在调查报告中收入压力容器脆性断裂事故18例,其中最典型的例子为:1919年美国马萨诸塞州糖浆贮罐脆性断裂事故。事故原因是由于整个贮罐强度不够,特别是对局部应力集中缺乏考虑,以致在糖浆的内压作用下产生脆性断裂。本世纪40年代球形贮罐的破坏事故更为突出,1943年美国纽约州有一个直径12米的大型贮气罐,当

3、温度降到-12℃时发生脆断。1944年10月美国俄亥俄州煤气公司一台球形液态天然气贮罐(直径21.3米、高12.8米、工作压力5磅/平方英寸、工作温度-162℃)发生了一次严重的脆性断裂事故。1945年美国一台工作温度为-110℃的甲烷塔发生脆断。1947年冬苏联几个石油贮罐在气温-43℃时脆断。1965-1971年期间压力容器脆性断裂事故达10余次之多。下面介绍几个较典型的压力容器脆性断裂事故。(1)化工氨合成容器脆断1965年英国Imminghan合成氨厂使用的大型厚壁压力容器,在水压试验时发生脆性断裂。该容器全长18.3米、外径2米

4、、壁厚150毫米。容器壳体材料是Mn-Cr-Mo-V钢。破坏是从锻造法兰和筒身的环向自动埋弧焊缝处开始的。锻件上有偏析区,在偏析区与熔合线交点附近产生边长约10毫米的三角形裂纹,此处是破裂的起始点。断裂原因是由于在法兰一侧的环向焊缝熔合线上碳和合金元素偏析,以致使该区具有高的强度和硬度,测定结果表明:偏析区的HV硬度为420-460,而热影响区的HV硬度为310-360;另外,再加上焊接后热处理不完善,其消除应力退火比原定温度偏低130℃左右,从而使焊缝金属脆化,20℃时该焊缝金属的却贝冲击能只有1.5公斤·米/平方厘米,而正常热处理后的

5、却贝冲击能值为6公斤·米/平方厘米。由此可知,低合金钢焊缝金属对焊接后消除应力处理的温度是很敏感的,因之,我们必须重视焊后热处理。(2)锅炉汽包脆断1966年英国Cockenize电厂锅炉汽包在水压试验时发生脆性断裂。汽包是用Mn-Cr-Mo-V钢板制造的,筒体全长23米、内径1.7米、壁厚140毫米。该容器采用了以新的贯通形管接头代替旧的管接头。在沿该管接头的汽包筒身内侧靠近省煤器管接头处潜伏着一个长度为330毫米、深为90毫米的大裂纹,并且裂纹表面已发黑。破坏就是从这里开始的。裂纹呈人字形方向扩展。经检查表明:在原始钢板中没有发现任何

6、缺陷,而且在裂纹起始处材料的金相组织未发现异常的特征;汽包的设计、所用材料、制造方法、热处理以及检验均符合于英国标准1113-1958要求。而且焊接完毕后,在消除应力退火前用磁粉探伤并未发现任何裂纹。经研究确定:这条裂纹是在消除应力退火处理的初期阶段就已形成,但尚未扩展成脆性临界裂纹。而且认为这种裂纹产生原因是由于在较低温度时急剧加热所产生的热应力和焊接残余应力相迭加,以及氢的延迟破坏等因素综合作用的结果。这个事故清楚地告诉我们,大型厚壁压力窗口刚性大的焊接部位氢的延迟破坏是危险的,在消除应力退火处理的过程中要注意加热速度,以免产生裂纹,

7、并且在退火后应进行探伤检查,以防漏检。1969年西德一台由MnNiMoV(BHW38)低合金钢制造的锅炉汽包,在水压试验时也发生脆性断裂。该汽包外径为1600毫米、筒体壁厚为75毫米、总长度为11.6米。这种钢的成分规定为:0.16C、1.33Mn、1.14Ni、0.22Mo、0.14V、P和S<0.015。水压试验时注入热水温度为65℃,在试验过程中没有测定汽包实际温度,当水压应力达到工作应力1.3倍时汽包突然发生破坏。刚爆破时汽包壁温度为35℃,这说明该汽包脆性断裂温度约为35℃。对断裂后钢板进行化学成分的分析表明:钢中Mn含量为1.

8、72%、Al含量为0.06%。其中,由于Mn含量值比标准规定的高,以致使钢板具有高强度和低冲击韧性,由此所得的屈服强度值比标准规定的下限值高20公斤/平方毫米,而在0℃时却贝冲击韧性值约为2.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。