《A_unifying_autocatalytic_network-based_framework_f》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
Aunifyingautocatalyticnetwork-basedframeworkforbacterialgrowthlawsaaa,b,1AnjanRoy,DotanGoberman,andRamiPugatchaDepartmentofIndustrialEngineeringandManagement,Ben-GurionUniversityoftheNegev,BeerSheva8410501,Israel;andbQuantitativeLifeScienceSection,TheAbdusSalamInternationalCenterforTheoreticalPhysics,Trieste34014,ItalyEditedbyPeterSchuster,UniversitatWien,Vienna,Austria,andapprovedJuly8,2021(receivedforreviewApril25,2021)Recentlydiscoveredsimplequantitativerelations,knownasbac-teinsubunitsthatcomprisetheRNApolymerase.Eachoftheseterialgrowthlaws,hintattheexistenceofsimpleunderlyingtwocyclesalsoinvolvesaself-assemblystep.principlesattheheartofbacterialgrowth.Inthiswork,weBoththeRNApolymeraseandtheribosomeautocatalyticprovideaunifyingpictureofhowtheseknownrelations,ascyclesalsorelyonotherautocatalyticcyclesthatareintegralwellasrelationsthatwederive,stemfromauniversalauto-partsofthetranscription–translationmachinery.Theseaddi-catalyticnetworkcommontoallbacteria,facilitatingbalancedtionalautocatalyticcyclesareresponsibleforchargingtransferexponentialgrowthofindividualcells.WeshowthatthecoreofRNA(tRNA)withaminoacidsandinassistingtheribosomesthecellularautocatalyticnetworkisthetranscription–translationtoinitiate,translocate,andterminatethetranslationprocess.machinery—initselfanautocatalyticnetworkcomprisingsev-Theautocatalyticnatureofthesecyclesislessfamiliaranderalcoupledautocatalyticcycles,includingtheribosome,RNAbecomesmoreevidentwhenweconsidereachofitselements,polymerase,andtransferRNA(tRNA)chargingcycles.Wederivee.g.,tRNAascatalyzingitselfwiththehelpofRNApolymerasestwotypesofgrowthlawsperautocatalyticcycle,onerelatingandribosomes,asweexplainbelow.growthratetotherelativefractionofthecatalystanditscatal-Alltheautocatalyticcyclesmentionedaboveareintertwinedysisrateandtheotherrelatinggrowthratetoallthetimescalesandrequireeachothertoperformautocatalysis;removinganyinthecycle.Thestructureoftheautocatalyticnetworkgener-keycatalystfromanyoneofthesecyclesbreaksautocatalysisinatesnumerousregimesinstatespace,determinedbythelimitingallthecycles.components,whilethenumberofgrowthlawscanbemuchRecently,the“ribo-centric”view,whichfocusesontheribo-smaller.WealsoderiveagrowthlawthataccountsfortheRNAsomeautocatalyticcycle(“ribosomesmakeribosomes”),hasledSYSTEMSBIOLOGYpolymeraseautocatalyticcycle,whichweusetoexplainhowtothediscoveryofabacterialgrowthlawthatquantitativelygrowthratedependsontheinducibleexpressionoftherpoBandrelatesbacterialgrowthratetotheribosomalproteinfractionrpoCgenes,whichcodefortheRpoBandCproteinsubunitsofandtheribosometranslationrate(3,4).ArecentstudyfocusedRNApolymerase,andhowtheconcentrationofrifampicin,whichontherelationshipbetweengrowthrate,translationrate,andthetargetsRNApolymerase,affectsgrowthratewithoutchangingtranscriptionofrRNA(5).theRNA-to-proteinratio.WederivegrowthlawsfortRNAsyn-Despiteitssuccesses,theribo-centricapproachalsohasshort-thesisandchargingandpredicthowgrowthratedependsoncomings,asitdisregardsbothtranscription—animportantpillartemperature,perturbationtoribosomeassembly,andmembraneBIOPHYSICSANDCOMPUTATIONALBIOLOGYsynthesis.SignificancebacterialgrowthlawsjautocatalysisjtranscriptionjtranslationjBacterialcellscontainvariousautocatalyticcycles,e.g.,theself-replicationribosomecycle,whereribosomestranslateribosomalpro-teinsthatsubsequentlyself-assembletoformnewribosomes.hetranscription–translationmachineryisauniversalsetofHere,weshowthatthetranscription–translationmachin-Tmolecularmachinesatthecoreofallknownself-reproducingerycouplesallcellularautocatalyticcycles,resultinginbal-single-cellorganisms.Itcanbeconsideredasanembodimentancedexponentialgrowth.EachautocatalyticcyclegeneratesofvonNeuman’sconceptofauniversalconstructor—amachinetwotypesofgrowthlaws.WederivetheRNApoly-capableofmakingothermachines,self-included,byreadinganmerase(RNAP)growthlawbasedontheRNAPautocat-instructionsetandconsumingrawmaterials(1,2).alyticcycle,whereRNAPstranscribemessengerRNAs(mRNAs)Thetranscription–translationmachineryiscomposedoftwoofitsconstituentRpoproteinsubunits.Beforedegrading,keymolecularmachines,RNApolymeraseandtheribosome.thesemRNAscatalyzeRpoproteinsemployingribosomes.Accordingtothecentraldogma,allcellularproteinsaresynthe-TheRpoproteinssubsequentlyself-assemble,formingnewsizedbythiscoremachineryinatwo-stepprocess:RNApoly-RNAPs,thuscompletingthecycle.ContrarytoribosomemerasesfirsttranscribegenestoformmessengerRNA(mRNA)growthlaw,areductioningrowthrateduetoshortagein“instructionsets,”whicharethentranslatedbyribosomestoRNAPsoccurswithoutaffectingtheribosomalproteinmassformproteins.fraction.Toqualifyasa“universalconstructor,”thetranscription–Authorcontributions:R.P.conceptualizedresearch;A.R.andR.P.designedresearch;A.R.,translationmachinerymustalsobecapableofreplicatingitself.D.G.,andR.P.performedresearch;R.P.supervisedresearch;A.R.,D.G.,andR.P.developedTheself-replicationofthetranscription–translationmachineryismethodologyandcontributedanalyticaltools;A.R.andR.P.analyzeddata;andA.R.andacomplexprocess,whichis,nevertheless,universaltoallsingle-R.P.wrotethepaper.ycellorganismscapableofself-replication.ItproceedsviatwoTheauthorsdeclarenocompetinginterest.yprominentcoupledautocatalyticcycles,theRNApolymeraseThisarticleisaPNASDirectSubmission.yautocatalyticcycleandtheribosomeautocatalyticcycle.ThetwoThisopenaccessarticleisdistributedunderCreativeCommonsAttribution-NonCommercial-cyclesarecoupledbecausethedenovosynthesisofnewribo-NoDerivativesLicense4.0(CCBY-NC-ND).ysomescannottakeplacewithoutRNApolymerasetranscribing1Towhomcorrespondencemaybeaddressed.Email:rpugatch@bgu.ac.il.yribosomalRNA(rRNA),whilethedenovosynthesisofRNAThisarticlecontainssupportinginformationonlineathttps://www.pnas.org/lookup/suppl/polymerasecannottakeplacewithoutribosomestranslatingthedoi:10.1073/pnas.2107829118/-/DCSupplemental.ymRNAsofrpogenes,whichcodefortheRNApolymerasepro-PublishedAugust13,2021.PNAS2021Vol.118No.33e2107829118https://doi.org/10.1073/pnas.2107829118j1of12DownloadedbyguestonAugust13,2021
1inthecentraldogma—andotherautocatalyticcyclesinthecell.Thefactthatglobalcoupling,byitself,canguaranteebal-Incertaincasesdiscussedbelow—e.g.,whenthetemperatureancedgrowthwithacommongrowthrateimpliesthatthechangesmildlyorwhentranscriptionisperturbed—asignificantbiologicalfunctionofwell-knownfeedbackmechanisms,suchaschangeisobservedinthegrowthrate,butthischangeisnotthestringentresponse(7,8)orproductfeedbackinhibitioninaccompaniedbyachangeintheribosomefraction,asexpectedmetabolism(9),andinribosomeassembly(10),arerequiredforfromtheribosomegrowthlawpresentedinref.3.Explainingthisoptimizingthecoupling,e.g.,forgrowthrateorefficiency,ratherdeviationrequiresamoregeneralapproach.thanforgrowthcoordination.Here,wetakesuchageneralapproachbyconsideringOurmodelingapproachoffersasimplewaytorecognize“lim-bothtranscriptionandtranslationonanequalfooting,anditationregimes,”characterizedbyacompletelistofcatalystsandwederivegrowthlawsthatarebasedontheautocataly-substratesthatlocallylimitthereactionsinwhichtheypartici-sisofthetranscription–translationmachinery.Furthermore,pate.Thenumberoflimitationregimescombinatoriallyexplodesweshowthatbothtranscriptionandtranslationcouplesallwiththenumberofreactionsaccountedforbythemodel.Manyotherautocatalyticcyclesinthebacterialcell,leadingtobal-limitationregimescanbefurtheraggregatedtoform“growthancedexponentialgrowthofallcomponents,atthesameregimes,”whicharecharacterizedbyhavingacommonlimitinggrowthrate,withoutrequiringcomplexfeedbackmechanismsautocatalyticcycle.Asmentionedabove,eachlimitingcyclegives(Fig.1).risetotwotypesofgrowthlaws.WedemonstratethateachautocatalyticcycleleadstotwoNotably,despitetheirelegantsimplicityandexperimentalsuc-typesofgrowthlaws.Thefirsttype,whichwerefertoasthecess(3,4,11),bacterialgrowthlawsdonotuniquelydefinetherelativeabundancegrowthlaw,relatesthegrowthratetotherel-cellularstateorelucidatethecomplexevolutionarilyshapedcon-ativeabundancesofthecatalyststhatdrivethecycleandtotheirtrolmechanismsthatdrivethecelltoaparticularlimitationcatalysisrates.Thesecondtype,whichwerefertoastheclosed-andgrowthregime.Findingsuchanevolutionarydesignlogiccyclegrowthlaws,relatethegrowthratetoallthecatalysisratesremainsaninterestingopenchallenge(11).andallocationparameterswithinagivenautocatalyticcycle.InordertounderstandourmathematicalderivationsandAnallocationparameteristhefractionofcatalystsallocatedresults,readersmayfinditusefultostartwithMethods,wheretowardaparticulartask,e.g.,thefractionofribosomesallocatedweexplainourformalismusingasimplifiedtoyexample.Further-tomakeribosomalproteins.Usingthisformalism,werederivemore,wenotethat,inordertoapplyourmethod,detailedknowl-existinggrowthlawsandalsoderiveanddiscussothergrowthedgeofautocatalyticprocessesinbacterialcells,theircoupling,laws,thusdemonstratingthemeritsofaholisticpictureofbacte-andtheallocationofcatalyststodifferentcyclesisrequired.rialcellulargrowth.Weshowthattheuniversalcouplinginducedbythetranscription–translationmachineryisresponsibleforResultslockingallcyclestothesameexponentialgrowthrate,irrespec-TheTranscription–TranslationMachinerySelf-ReplicatesUsingSev-tiveofthenatureofthecoupling,whichcanbenonoptimaleralCoupledAutocatalyticCycles.Thetranscription–translation(Methods).machineryself-replicatesusingthreemaincoupledautocatalyticFig.1.Schematicdiagramofabacterialautocatalyticnetwork,showcasingdifferentautocatalyticcyclescoarselygrained.Thetopleftcornershowsanexplanationofthegraphicalnotation,followingref.6.Areactionnodeismarkedbyasquare.Substratesconsumedbythereactionaredepictedinsideopenboxes.Catalyststhatdriveareaction,butarenotconsumedbyit,aredepictedinsidedashedcurvedarrows.Eacharrowemanatingfromareactionnodepointstoproductofthesynthesisreaction.Inanautocatalyticreaction,thesynthesizedproductsthemselvesserveasthecatalyststhatdrivethereaction.InMethods,weexplainhowthisgraphicalnotationistranslatedtoasetofcoupledODEs,fromwhichwederivethegrowthlawsbysolvingforthesteadygrowthcondition.Inthemainfigure,wepresentaschematicautocatalyticreactionnetworkforanentirecell.Thetranscription–translationmachineryconsumesrawmaterialsandenergy(notshown)andproducescopiesofalltheproteins,includingcopiesofitself.DNAisreplicatedbythereplisomemachinery,usingtheexistingDNAasatemplate.Metabolicproteinsimportandconvertexternalmetabolitesintonucleotides,aminoacids,fattyacids,andothermetabolites.Themembraneissynthesizedbythemembranesynthesisproteins.Thus,fourmajorautocatalyticcyclesareshowninthiscoarse-grainedpicture—theautocatalysisofthetranscription–translationmachinery,oftheDNA,ofmetabolism,andofthemembrane.Alltheseautocatalyticcyclesarecoupledbythetranscription–translationmachinery.2of12jPNASRoyetal.https://doi.org/10.1073/pnas.2107829118Aunifyingautocatalyticnetwork-basedframeworkforbacterialgrowthlawsDownloadedbyguestonAugust13,2021
2cycles:1)theribosomecycle,2)theRNApolymerase1RPjRb(SA(R)+1)(pool(RPj)+1)+=,[1]cycle,and3)thetRNA-chargingcycle;othertranslation-life(R)RPjRfacilitatingcyclesarenotdiscussedhere.InFig.2,thesethreeautocatalyticcyclesareschematicallydepictedandwhereisthegrowthrate;SA(R)istheribosomeassemblytime;explained.pool(RPj)isthedurationthattheribosomalproteinspendinitsTheribosomeautocatalyticcycle.Tosynthesizeribosomesdeassemblyprecursorpool;Risthetotalnumberofribosomes;Rbnovo,existingribosomesmustcreatemorethan50differentribo-isthetotalnumberofactiveribosomes,life(R)isthelifetimeofsomalproteinsubunits.ThemRNAsfortheribosomalproteinstheribosome;RPisthefractionofribosomesallocatedtosyn-jaretranscribedbyRNApolymerases.Asubgroupoftheriboso-thesizeribosomalproteinRPj;RP=LRPaaisthetranslationjjmalproteinsdirectlybindtorRNA,whichisalsotranscribedbydurationofribosomalproteinRPj,whoselengthisLRPjaminoRNApolymerases.Subsequently,otherribosomalproteinsbindacids;and 1istheribosomeelongationrate.aatothesubassembledribosome,inapredefinedpartialorder(12),Ifwefurtherassumethatboththeribosomeassemblytimeandelucidatedbythewell-knownsmallandlargeribosomesubunitthedurationthatfree-floatingribosomalproteinsspendintheirassemblymaps(13,14).precursorpoolsarenegligiblecomparedwiththedoublingtime,Wederivetheautocatalyticcycleofribosomalproteinsbyi.e.,1=SA(R)and1=pool(RPj),weobtainassumingthatrRNAisabundantandbyfocusingonthefractionRPofribosomesthatareallocatedtosynthesizethesepro-RPjRP+=RPb,[2]teins.Theribosomalproteinsspendsometimefreefloatingandjjlife(R)eventuallyentertheribosomeassemblyline,wheretheyspendsometimeintheassemblyprocessandthenexit,embeddedinwhereRbb=isthefractionofactiveribosomes.Rthesmallorlargesubunitoftheribosome.Thenewlysynthe-ThetermRPbinEq.2isthefractionofactiveribosomesjsizedsmallandlargeribosomesubunitsspendsometimefreethatareallocatedtotranslateribosomalproteins.Thus,thesec-floatingbeforebindingtomRNAandbecomingengagedintheondtermontheleft-handsidestandsfortheallocationofactivetranslationprocess.ribosomestothetranslationofribosomalproteinsatzerogrowthWederiveboththeabundanceandtheclosed-cyclegrowth=0.lawsbywritingasetofcoupledordinarydifferentialequationsEq.2isthusequivalenttothewell-knownbacterialgrowthlaw,(ODEs)fortherateofchangeintheabundanceofribosomal+0=R,presentedandexperimentallytestedinrefs.3and4proteins,therateofconversiontoanactiveassemblingstate,undertheconditionsSA(R)1andpooli1.Inthisapprox-SYSTEMSBIOLOGYtherateofassemblyofnewribosomes,andtherateofinter-imation,themassfractionoftheribosomalproteins(whichisconversionbetweenrestingandactivestates(SIAppendix).The2=3oftheRNA-to-proteinratio)isequivalenttotheallocationresultingclosed-cyclegrowthlawisparameteroftheribosomes,namely,thefractionofribosomesBIOPHYSICSANDCOMPUTATIONALBIOLOGYFig.2.Thetranscription–translationautocatalyticnetwork.Inthisschematicdiagram,wecoarselyshowhowthetranscription–translationmachineryself-replicatesviathreemaincoupledautocatalyticcycles:1)Theribosomeautocatalyticcycle,whichcomprisestworeactions:oneforribosomesthatsynthesizeribosomalproteinsandoneforRNApolymerasethatsynthesizesrRNA.TheribosomalproteinsandtherRNAsmergeinaself-assemblyreactiontoformnewribosomes.2)TheRNApolymeraseautocatalyticcycle,inwhichRNApolymerasestranscribethemRNAsthatcatalyzetheproductionoftheRpoproteinsubunits,which,inturn,self-assembletoformnewRNApolymerases.3)ThetRNA-chargingreactionwhere,e.g.,aa-tRNA-synt.catalyzethechargingoftRNAwithaminoacids,which,inturn,transfertheaminoacidstoribosomesthattranslatemRNAs,includingthemRNAsofaa-tRNA-synt.Anysubstratethatisnotconsumedbythereactioncanbeconsideredasacatalyst;forexample,mRNAcanbeviewedasacatalystforproteinsynthesis,butitscatalysisrateisnitimeshigherthanthatofasingleribosome,whereniistheaveragenumberofribosomescotranslatingthismRNA.Importantly,intheabsenceofanytypeofmaterialinputs—eithercatalystsliketRNAs,mRNAs,ribosomes,RNApolymerases,aa-tRNA-synt.,orsubstrateslikeaminoacidsorrRNAs—willbringtheautocatalysisoftheentirenetworktoahalt.Royetal.PNASj3of12Aunifyingautocatalyticnetwork-basedframeworkforbacterialgrowthlawshttps://doi.org/10.1073/pnas.2107829118DownloadedbyguestonAugust13,2021
3allocatedtotranslateribosomalproteins(SIAppendix).Signif-Theclosed-cycleRNApolymerasegrowthlaw(Fig.3)isicantly,thevalidityoftheseassumptionsandtheagreementobtainedbywritingasetofcoupledODEsfortherateofchangebetweenribosomeallocationandribosomemassfractioncaninthemRNAstranscribedfromtherpogenes,whileaccount-betestedexperimentallybecauseribosomeallocationcanbeingfortheirfinitelifetimes,therateofchangeinRpoproteinmeasureddirectlythroughribosome-profilingexperiments,whilesubunits,therateofproductionofnewRNApolymerasesfromribosomalproteinmassfractioncanbemeasuredbyusingRNA-theRposubunitsafterassembly,andthefractionofactiveRNAsequencingcombinedwithmassspectrometry(4).Indeed,inapolymerasesthatare(re)allocatedtotranscribetherpogenes,20-mindoublingtime,themeasuredribosomalmassfractionwasthussustainingtheexponentialgrowthofRNApolymerasesinmeasuredtobe30%(3),whilearibosome-profilingexperimentthecell.TheseODEsyieldsthefollowingclosed-cyclegrowthfoundthat28:5%oftheactiveribosomes,or32%ofthetotallaw:numberofribosomes,areengagedintheprocessoftranslatingribosomalproteins(15).Nevertheless,deviationsfromthecorre-spondencebetweenmassfractionandtheallocationparameter4life(Rpol)rpojRm(Rpoj)life(m(Rpoj))~i=1(1+i)=b,[5]arepredictedbyourmodelwhenoneormoreoftheafore-Rpojrpojmentionedassumptionsbreaksdown,e.g.,whentheribosomeassemblytimeincreases,asinref.16.Thesepredicteddeviationscanbeexperimentallytested.where1=SA(Rpol)istheRNApolymeraseassemblydura-Sinceribosomesaresynthesizedbytheself-assemblyofrRNAtion,2=life(m(Rpoj))isthelifetimeofthemRNAofRpoj,andribosomalproteins,wecanalsowritearibosomegrowth3=pool(Rpoj)isthedurationthatRpojspendsinitsprecursorlawthatisbasedontheproductionofrRNAsbyRNApoly-pool,andlife(Rpol)istheRNApolymeraselifetime.Additionally,merases.Theresultingabundanceandclosed-cyclegrowthlawsrpoisthefractionofactiveRNApolymerasestranscribingthejareobtainedbywritingasetofcoupledODEs,fortherateofmRNAsoftheRNApolymerasesubunitRpoj,Rmistheaver-changeintheabundanceofRNApolymerasesubunits,therateagenumberofribosomestranslatingthismRNA,and~Rpolbb=Rpolofconversiontoanactivelytranscribingstate,therateoftran-isthefractionofactiveRNApolymerases.AsthegrowthratescriptionofnewrRNAbyRNApolymerases,andtherateofdecreasestowardzero,Eq.5predictsthatthecellwillstillcon-productionofnewribosomesbytheserRNAsafterassembly(SItainafinitefractionofactiveRNApolymerases,aswasthecaseAppendix).Weobtainthefollowingclosed-cyclegrowthlaw,intheribosomegrowthlaw.TodemonstratethemeritofourRNApolymerasegrowthlaw,weuseddatafromtworecentexperiments(20,21).IntheR(SA(Rpol)+1)(SA(R)+1)(pool(Rpoj)+1)R+firstexperiment,theresearchersdevelopedareversiblegrowthlife(R)switchinEscherichiacolibyremovingrpoBCgenesfromitsRpolrRNAjRpojgenomeandplacingthemonaplasmidwithaninduciblepro-Rpol+=RbRpolb,[3]moterandafluorescentreporter(20).TheexpressionofrpoBClife(Rpol)rRNAjRpojgeneswasthuscontrolledviatheexternalconcentrationoftheinducer,isopropyl-D-1-thiogalactopyranoside(IPTG).WhentheIPTGconcentrationwashigh,nominalgrowthrateswerewhererRNAisthetranscriptiontimeofthejthrRNA;Rpojjobserved.However,whentheIPTGconcentrationdropped,aisthetranslationtimeofthejthRNApolymerasesubunit;rapiddecreaseingrowthratewasobserved.SA(Rpol)andlife(Rpol)aretheassemblytimeandlifetimeortheToexplaintherapiddecreaseingrowthrate,weemployourRNApolymerase,respectively;RpoisthefractionofactivejRNApolymerasegrowthlaw,Eq.5,withRpoBasthelimitingribosomestranslatingtheRpojproteinsubunitoftheRNApoly-factorintheassemblyprocess.AslongasthelevelsofRpoBmerase;rRNAisthefractionofactiveRNApolymerasestran-jundersteadygrowthconditionsarenonzero,thegrowthratescribingrRNAj;andRpolbisthenumberofRNApolymerasesdoesnotchange.However,assoonasthefreeRpoBpoolvan-thatareactivelytranscribing.ishesduetotheinducedreductioninitsexpression,theassemblyIfweassumefurtherthat1=SA(R),1=SA(Rpol),durationofnewRNApolymerasesstartstoincrease.Toaccount1=pool(Rpoj),andthatthelifetimesofribosomesandRNAforthisscenario,weassumethattheincreaseintheassemblypolymerasesarelongerthanthedoublingtime,weobtaintimeequalsthedelayinthedeliveryofRpoB.Themeasuredfluorescenceofthereporterproteinisnotpro-2rRNAjRpojRbRpolbportionaltothesizeofthefreeRpopool,becausetheRpoB=,[4]proteinsareconsumedbytheassemblyreactionatafasterraterRNARpoRRpoljjthanthedecayrateofthefluorescence.Therefore,weexpectthefluorescenceleveltomonotonicallyincreasewiththeexpres-sionlevel.TheequationthatweusefortheassemblydurationwhichisequivalenttotherRNAautocatalysisgrowthlawhFpresentedinref.5.is^SA(Rpol)=SA(Rpol)Fh+Kh,whereSA(Rpol)istheassemblydurationinthenominal(highIPTGorwild-type)case.TheRNAPolymeraseAutocatalyticCycle.Inbacteria,RNApoly-Forthethreeenvironmentstestedintheexperiment,wefittedmerasecomprisesfourcoreproteinsubunits—rpoA(),rpoBtheRNApolymeraseallocationparametertoyieldthenominal0(),rpoC(),andrpoZ(!)—andaninterchangeablefactor.growthratewithoutlimitingtheexpressionoftherpoBandrpoCConsiderthe“RNApolymerasemakesRNApolymerase”auto-genes.Allotherparametersweretakenfromknownmeasure-catalyticcycle,whichoperatesasfollows.Afractionoftheactivements(18,19);seeSIAppendixformoredetails.Next,wefittedRNApolymerases,rpo,isallocatedtotranscribingmRNAsfromthevaluesofKandhtothegrowthrateasafunctionoftheflu-therpogenes,whileafractionoftheactiveribosomes,Rpo,orescenceintheM9+glucosemedium.WefoundthatthefittedisallocatedtotranslatingthesemRNAsandsynthesizingthevaluesofbothKandh(K=500,h=4)remainedvalidfortheRNApolymeraseproteinsubunits.Translationfromaspecificothertwoenvironments,withoutfurtherfitting,supportingthemRNAcontinuesuntilthemRNAdegrades,asithasafinitehypothesisthatourmodelisconsistent(Fig.3C).lifetimeof3min(17).TheRpoproteinsubunitssubsequentlyInthesecondexperiment(21),sublethaldosagesofself-assembletoformnewRNApolymerases.rifampicin—adrugthattargetsDNA-boundRNApolymerases4of12jPNASRoyetal.https://doi.org/10.1073/pnas.2107829118Aunifyingautocatalyticnetwork-basedframeworkforbacterialgrowthlawsDownloadedbyguestonAugust13,2021
4ABCDFig.3.TheRNApolymerasegrowthlaw.(A)IllustrationoftheRNApolymeraseautocatalyticcycle.AmongtheactiveRNApolymerases,afractionrpoA D=Zisallocatedtotranscribe(transc.)therpoA-DandrpoZgenes(rpoDnotshown).ThetranscribedmRNAsproducetheRpoA-DandRpoZproteinsubunits 1duringtheirlifetime.TherateofproteinsynthesisbymRNAisequaltoRm,whereRmistheaveragenumberofribosomesonanmRNAoftypeiitransl:i 1andtransl:=Liaaisthedurationforasingleribosometotranslate(transl.)mRNAoftypei,whoselengthisLibase-pairtriplets,andaaistheribosomeSYSTEMSBIOLOGYelongationrate.TheRpojproteins,j2fA,B,C,D,Zgself-assembletoformnewRNApolymerases,whichjointhecollectivepoolofRNApolymerases.ThefractionofactiveRNApolymerasesbistakenfromrefs.18and19.(B)TheRNApolymerasegrowthlaw.lifetimeistherpoBmRNAlifetime,takentobe3min(17),transc:isthedurationoftranscription,calculatedbasedonthetranscriptionratefromref.18andthelengthoftherpoBgene.ThefractionofactiveRNApolymerasesandtheRNApolymeraseassemblydurationaremodulatedbyusingseparateHillfunctions,inaccordancewiththeexperimentunderconsideration(seeCandDfordetails).(C)Thegrowthrateasafunctionofthefluorescentreporterprotein,inducedsubsequentlytotheinductionoftherpoBandrpoCgenesintheexperimentdetailedinref.20.SinceRpoBprecedesRpoCintheassemblyofRNApolymerase,uponthedepletionoftheRpoBpool,thesynthesisrateofRpoBgovernstheRNApolymeraseassemblyduration.ThetheoreticalfitswereproducedbyusingtheRNApolymerasegrowthlaw(B),byfittingonlyoncetheKandhparameters(curlybracketsinB).Tofacilitatethecomparisonbetweenthetheoreticalfitsandthedata,weartificiallyshiftedtheM9+glucoseby500arbitrary(arb.)unitsoffluorescenceandtheM9+casaminoacidsby1,000arbitraryunitsoffluorescence.(D)BIOPHYSICSANDCOMPUTATIONALBIOLOGYTheeffectofrifampicinonthegrowthrateofE.coli;dataweretakenfromref.21.Asrifampicinlevelsincrease,thefractionofactivelytranslatingRNApolymerases,^b,decreases.Wefindthat,whentheconcentrationofrifampicincisc17g=mL,thegrowthrateisreducedbyhalfcomparedwiththenominal(c=0)case.ThemeasuredRNA-to-proteinratio(whichisproportionaltotheribosomalproteinmassfraction)remainsconstant,indicatingthatribosomesdonotlimitthegrowthrateinthisexperiment.ThisisbecauseRNAtranscriptionbecomeslimiting,whichequallyattenuatesbothribogenesisandproteinsynthesisduetoaglobalshortageinallformsofmRNA,asexplainedinTheRNAPolymeraseAutocatalyticCycle.thatarejustbeginningtotranscribeRNA—wasadministeredtoInagrowingcell,mostRNAtranscriptionisofrRNA.There-E.coli.ThedependenceofthegrowthrateandtheRNA-to-fore,itisnaturaltoaskwhetherrifampicinreducesgrowthbyproteinsratioasafunctionoftheconcentrationofrifampicinpreventingrRNAtranscriptionand,thereby,ribogenesis.Usingwerebothmeasured.Thegrowthratewasfoundtodecreaseasourmodel,wecancalculatethegrowthrateandRNA-to-proteintheconcentrationofrifampicinincreased.TheRNA-to-proteinratioforvariouslimitationregimes.Weconsiderthreerelevantratio,however,remainedconstant(Fig.3D),inmarkeddiffer-limitationregimes:1)rRNAislimitingbutmRNAisnot;2)bothencetotheribosomegrowthlaw,wheretheRNA-to-proteinrRNAandmRNAarelimiting;and3)rRNAisnotlimiting,butratiowasfoundtochangelinearlywiththegrowthrate(3).mRNAis.WeexplainthisdiscrepancybyusingourRNApolymeraseInthefirstlimitationregime,rRNAcanlimitthesynthe-growthlaw(Eq.5;alsoseeFig.3D).OurmodelnaturallysisofnewribosomesbecauseRNApolymerasesarelimited,accountsfortheseobservationsbyassumingthatrifampicinbutmRNAdoesnotlimittranslation.ThereductioninrRNAturnstheRNApolymeraseautocatalyticcycletothelimit-synthesisisaccompaniedbyareductioninribosomalproteiningcyclebyreducingthenumberofactiveRNApolymerases.translation.ThisisduetoaremarkablemechanismdiscoveredAstheconcentrationofrifampicinincreases,thefractionofbyNomuraetal.(10),namely,thatribosomalproteinsthatactiveRNApolymerasesdecreases,and,accordingly,thegrowthareprimaryrRNAbinderscandown-regulatetheirowntrans-rateofRNApolymerasesdecreases.Moreover,thedecreaselation,aswellasthetranslationofotherribosomalproteinsinthenumberofactiveRNApolymerasesgloballydecreasesonthesameoperon,iftheyfailtofindtheirtargetrRNARNAtranscriptioninthecell,thusreducingthemRNAlev-sequence.Thistranslationalfeedbackmechanismisduetoanelsofallproteins,ribosomalandnonribosomalalike.Thisaffinityofribosomalproteins,whichareprimarybinders(14),processexplainswhytheRNA-to-proteinratioremainscon-tobindtoaregionontheirmRNA,whichissimilartotheirstant.WealsoderivedthisresultbyrewritingtheribosomerRNAbindingsite.BindingoftheseproteinstotheirownmRNAgrowthlawundertheassumptionthatmRNAislimiting(SIpreventsfurthertranslationfromthesemRNAs.TogetherwithAppendix).WenotethattheRNA-to-proteinratiocouldpoten-othermechanisms,thistranslationalfeedbackkeepsthelevelstiallyincreaseifproteinsynthesisisaffectedmoreseverelythanofribosomalproteinprecursorpoolsinsyncwithrRNAtran-ribogenesis.scription,which,inturn,isgovernedbythemodulationofRNARoyetal.PNASj5of12Aunifyingautocatalyticnetwork-basedframeworkforbacterialgrowthlawshttps://doi.org/10.1073/pnas.2107829118DownloadedbyguestonAugust13,2021
5polymerasetranscriptionviathestringentresponse(8).Thus,cyclelimiting.However,inthiscase,wewouldexpectthealimitationonrRNAtranscriptionwithoutanaccompaniedstringentresponsetoreducetheproductionofrRNA,which,limitationonmRNAisexpectedtoreduceribosomalproteininturn,wouldreducethetranslationofribosomalproteins.translationand,thereby,increasethenumberofribosomesthatThefreedribosomeswouldbedivertedtothetranslationofareallocatedtotranslateotherproteins.Therefore,theregimeproteinsbelongingtothelimitingmetaboliccycle.Thus,ifaofrRNAlimitationwithoutmRNAlimitationisexpectedtometabolicautocatalyticcyclewerelimiting,wewouldexpectreducetheRNA-to-proteinratio,incontrasttotheobservationtheRNA-to-proteinratiotodecreasewithincreasingrifampicinthatitremainedconstant.concentrations.ThesecondlimitationregimetoconsideristheregimeinThetRNA-synthetaseandtRNAautocatalyticcycles.Totrans-whichbothrRNAandmRNAsimultaneouslylimitribogenesislatemRNAs,ribosomesrelyonaseriesofessentialproteinsandtranslation.ThisregimeisconsistentwithaconstantRNA-thatfacilitateribosomebindingtomRNA,tRNAchargingandto-proteinratio,asthedecreaseintranslationiscommontotransferintotheribosome,translocatingtheribosomealongallproteinsectors.Inparticular,theribosomesthatarefreedthemRNA,andreleasingtheribosomesfromthemRNAuponfrommakingribosomalproteinscannotsynthesizeotherproteinscompletingthetranslationprocess.insteadbecausemRNAisinshortage.However,aglobalshort-Inallautocatalyticcycles,anyofthecatalyststhatarepartofageinmRNAalsomeansthattheRNApolymeraseautocatalyticthecyclecanbeseenasthepivotcatalysts,aroundwhichthecycleislimiting,astheshortageinmRNAiseventuallytheresultautocatalyticcycleisconstructed.Todemonstratethisnotion,weofashortageinRNApolymerase.Wethusconcludethat,ifbothpresenttwogrowthlaws—theaminoacyl-tRNAsynthetase(aa-rRNAandmRNAarelimitingbecauseRNApolymeraseislim-tRNA-synt.)growthlawandthetRNAgrowthlaw(Fig.4).iting,growthratewillbedeterminedbytheRNApolymeraseConsider,first,theaa-tRNA-synt.(aaS)foraparticularaminoautocatalyticcycle,andtheRNA-to-proteinratiowillremainacidi.TheaaSicatalyzestheloadingofanaminoacidoftypeconstant.iontoitscorrespondingtRNA.TheloadedtRNAthenbindstoThethirdlimitationregimetoconsideristhatinwhichrRNAEF-Tu—themostabundantproteininE.coli—andproceedstoisnotlimitingandmRNAislimiting.Thisregimeisalsoconsis-enteraribosomeanddeposittheaminoacidtotheelongatingtentwithaconstantRNA-to-proteinratio,astheglobalshortagepeptidechain,which,subsequently,foldstoformthenewpro-inmRNAimpliesareductioninproteinsynthesis,includingoftein.AfractionoftheproteinsformedwillbeaaSiproteins,thusribosomalproteins.IfonlymRNAislimitingbecauseRNApoly-closingthecycle.meraseislimiting,growthratewillbedeterminedbytheRNASimilarly,considertRNAsynthesisbyRNApolymerases.polymeraseautocatalyticcycle,andtheRNA-to-proteinratioAftermaturation,thetranscribedtRNAsarechargedwithaminowillremainconstant.acidsandtransferredtoribosomes.AfractionofthesetRNAsApossiblealternativeexplanationtothedecreaseingrowthwillcontributetheiraminoacidstoRpoproteins,which,inturn,rateasafunctionofrifampicinconcentrationisthattheself-assembletoformnewRNApolymerases,someofwhichmRNAshortagemakesaparticularmetabolicautocatalyticareallocatedtomaketRNAs,therebyclosingthecycle.MoreABFig.4.tRNAandaa-tRNA-synt.(aaS)autocatalyticcyclesandgrowthlaws.(A)ThetRNAautocatalyticcycle.tRNAsaretranscribedbyRNApolymerases(poly.).Afterthematurationprocess(notshown),eachtRNAischargedwithanaminoacidandloadedontoEF-Tu.TheEF-Tu-tRNA-aaisalsochargedwithGTP(notshown)andsubsequentlydeliverstheaminoacidtotheribosome.ThiscyclerepeatsuntilthetRNAdegradesinatimescalethatweassumetobemuchlongerthanthedoublingtime.SomeofthedeliveredaminoacidsareembeddedinRpoproteins,whichself-assembletoformnewRNApolymerases,someofwhichareallocatedtotranscribetRNAs,thuscompletingthecycle.(B)Theaa-tRNA-synt.autocatalyticcycle.Anaa-tRNA-synt.proteinofaspecifiedtypechargestRNAwithitscorrespondingaminoacid.AfractionofthechargedtRNAscontributestheaminoacidstoformnewaa-tRNA-synt.ofthesametype,thuscompletingthecycle.Inthemiddleofthefigure,weshowtheratiobetweentRNAoftypeianditsassociatedaa-tRNA-synt.Neglectingcross-charging,thisratioequals,atbalancedgrowth,theratioofthechargingcycledurationtothechargingduration.6of12jPNASRoyetal.https://doi.org/10.1073/pnas.2107829118Aunifyingautocatalyticnetwork-basedframeworkforbacterialgrowthlawsDownloadedbyguestonAugust13,2021
6generally,usingthismethodallowsustoconnectalmostanytworate,allunderthesameconditionsand,preferably,onthesameprocessesinthecell,e.g.,transcription,translation,tRNAcharg-experiment.ing,metabolicrate,DNAsynthesisrate,membranesynthesis,InFig.4,wepresentthesetwoautocatalyticcyclesandtheandassemblytimesofproteincomplexes.resultinggrowthlaws.InthecurrentcontextoftRNAcharging,wefindaconnec-tionbetweenthenumberoftRNAsandthenumberofRNAFurtherApplicationsoftheAutocatalyticGrowthLaws.polymerasesrequiredtosustaingrowthatagivenrate,givenGrowthratedependenceontemperature.OurstartingpointistheallocationofRNApolymerasetowardthetranscriptionofthebacterialgrowthlaw=transl:(R 0),whichwasexperi-tRNAandrpogenes.Wefindthatthegrowthrateisequalmentallymeasuredat37C.Werecallafewexperimentalfacts.tothefractionofactiveRNApolymerasestranscribingmRNAsThefirstobservationistheexistenceofanArrheniusregime,dividedbythetranscriptiondurationmultipliedbytheactivewhichisarangeoftemperaturesbetweenTAc=20CandRNApolymerasetotRNAratio,=tRNARpolb.TAh=40CinE.coli,wheretheRNA-to-proteinratiodoestRNAtRNAnotchange,whiletheribosomeelongationratechangeswithTraditionally,theratiooftRNAtoribosomeswasstudiedGsincetRNAtransportsaminoacidstotheribosomes.Addi-anArrheniustemperaturedependence,i.e.,^=ekBT.elong:elong:tionally,theRNApolymerasetoribosomesratiowasstudiedThefactthatgrowthratescaleswithtemperaturewithansinceRNApolymerasewritesmRNAinstructionsforribosomesArrhenius-typedependence,whichistypicallyrelevanttoasin-totranslate.However,evidently,tRNAalsoservesRNApoly-glechemicalreaction,mightseemsurprising;however,ifthemerases,albeitindirectly,becauseRNApolymerasesaremaderibosomeautocatalyticcycleisthelimitingcycle,allotherauto-ofproteins,andtRNAmustdelivertheaminoacidsrequiredcatalyticcycleslockstoitsgrowthrate,andthescalingbecomesformakingtheseproteinstotheribosomesthataresynthe-anaturalconsequenceoftheincreaseintheelongationratewithsizingthem.Thus,italsomakessensetoinquireaboutthetemperature.Furthermore,thefactthattheribosomefractionratiobetweentRNAsandRNApolymerases,atbalancedgrowthremainsconstantwithintheArrheniusregimecomesasanat-conditions.uralconsequencetothefactthatthiscycleistheleadingcycleTheaa-tRNA-synt.growthlawthatwederiveisgivenbyacrosstheentireArrheniusregime.WhathappensbeyondtheArrheniusregime?Bothaboveandbelowthisregime,thecellaaSBIOLOGY=i,[6]cannotsustaingrowth,becauseanincreasingnumberofproteinsLifusage(i)charging(i)denature,ifT>TAh,ormisfold,ifT