multiobjective genetic algorithms98deb problem difficultiesp30外语英文电子书

multiobjective genetic algorithms98deb problem difficultiesp30外语英文电子书

ID:8058534

大小:3.12 MB

页数:30页

时间:2018-03-05

multiobjective genetic algorithms98deb  problem difficultiesp30外语英文电子书_第1页
multiobjective genetic algorithms98deb  problem difficultiesp30外语英文电子书_第2页
multiobjective genetic algorithms98deb  problem difficultiesp30外语英文电子书_第3页
multiobjective genetic algorithms98deb  problem difficultiesp30外语英文电子书_第4页
multiobjective genetic algorithms98deb  problem difficultiesp30外语英文电子书_第5页
资源描述:

《multiobjective genetic algorithms98deb problem difficultiesp30外语英文电子书》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Multi-ObjectiveGeneticAlgorithms:ProblemDifficultiesandConstructionofTestProblemsKalyanmoyDebKanpurGeneticAlgorithmsLaboratory(KanGAL)DepartmentofMechanicalEngineeringIndianInstituteofTechnologyKanpurKanpur,PIN208016,IndiaE-mail:deb@iitk.ac.inAbstractInthispaper,westudytheprobl

2、emfeaturesthatmaycauseamulti-objectivegeneticalgorithm(GA)difficultytoconvergetothetruePareto-optimalfront.Identificationofsuchfeatureshelpsusdevelopdifficulttestproblemsformulti-objectiveoptimization.Multi-objectivetestproblemsareconstructedfromsingle-objectiveoptimizationproble

3、ms,therebyallowingknowndifficultfeaturesofsingle-objectiveproblems(suchasmulti-modalityordeception)tobedirectlytransferredtothecorrespondingmulti-objectiveproblem.Inaddition,testproblemshavingfeaturesspecifictomulti-objectiveoptimizationarealsoconstructed.Theconstructionmethodol

4、ogyallowsasimplerwaytodeveloptestproblemshavingotherdifficultandinterestingproblemfeatures.Moreimportantly,thesedifficulttestproblemswillenableresearcherstotesttheiralgorithmsforspecificaspectsofmulti-objectiveoptimizationinthecomingyears.1IntroductionAfteraboutadecadesincethepio

5、neeringworkbySchaffer(1984;1985),anumberofstudiesonmulti-objectivegeneticalgorithms(GAs)havebeenpursuedsincetheyear1994,althoughmostofthesestudiestookahintfromGoldberg(1989).TheprimaryreasonforthesestudiesisauniquefeatureofGAs—populationapproach—thatmakethemhighlysuitabletobeu

6、sedinmulti-objectiveoptimization.SinceGAsworkwithapopulationofsolutions,multiplePareto-optimalsolutionscanbecapturedinaGApopu-lationinasinglesimulationrun.Duringtheyear1993-94,anumberofindependentGAimplementations(FonsecaandFleming,1993;Horn,Nafploitis,andGoldberg,1994;Sriniva

7、sandDeb,1994)emerged.Later,anumberofotherresearchershaveusedtheseimplementationsinvariousmulti-objectiveoptimiza-tionapplicationswithsuccess(Cunha,Oliviera,andCovas,1997;Eheart,Cieniawski,andRanjithan,1993;Mitra,Deb,andGupta,1998;ParksandMiller,1998;Weile,Michelsson,andGoldber

8、g,1996).Anumberofstudieshavealsoconcentratedindevelopingnewan

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。