鼎尖教案必修4数学答案

鼎尖教案必修4数学答案

ID:7789785

大小:57.50 KB

页数:19页

时间:2018-02-25

鼎尖教案必修4数学答案_第1页
鼎尖教案必修4数学答案_第2页
鼎尖教案必修4数学答案_第3页
鼎尖教案必修4数学答案_第4页
鼎尖教案必修4数学答案_第5页
资源描述:

《鼎尖教案必修4数学答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、精品文档鼎尖教案必修4数学答案1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能推广角的概念、引入大于360?角和负角;理解并掌握正角、负角、零角的定义;理解任意角以及象限角的概念;掌握所有与?角终边相同的角的表示方法;树立运动变化观点,深刻理解推广后的角的概念;揭示知识背景,引发学生学习兴趣.创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720?,逆时针旋转”,角有大于360?角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念

2、;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值2016全新精品资料-全新公文范文-全程指导写作–独家原创19/19精品文档通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点:理解正角、负

3、角和零角的定义,掌握终边相同角的表示法.难点:终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何

4、将它校准?当时间校准以后,分针转了多少度?2016全新精品资料-全新公文范文-全程指导写作–独家原创19/19精品文档[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0??360?之间,这正是我们这节课要研究的主要内容——任意角.1.初中时,我们已学习了0??360?角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA,绕着它的端点

5、O按逆时针方向旋转到终止位置OB,就形成角?.旋转OB叫终边,开始时的射线OA叫做角的始边,射线的端点O叫做叫?的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720?”,“转体1080?”等,都是遇到大于360?的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360?的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究

6、推广角概念的必要性.2016全新精品资料-全新公文范文-全程指导写作–独家原创19/19精品文档为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角.如果一条射线没有做任何旋转,我们称它形成了一个零角.[展示课件]如教材图1.1.3中的角是一个正角,它等于750?;图1.1.3中,正角??210?,负角???150?,???660?;这样,我们就把角的概念推广到了任意角,包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角?”或“??”可简记为?.3.在今后

7、的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边在第几象限,我们就说这个角是第几象限角.如教材图1.1-4中的30?角、?210?角分别是第一象限角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.4.[展示投影]练习:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.今天是星期三那么7k天后的那一天是星期几?k天前的那一天是星期几?100天后的那

8、一天是星期几?2016全新精品资料-全新公文范文-全程指导写作–独家原创19/19精品文档5.探究:将角按上述方法放在直角坐标系中后,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系中任意一条射线OB,以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?请结合4.口答加以分析.[展示课件]不难发现,在教材图1.1-5中,如果?32?的终边是OB,那么3?2?8??,角的终边都是OB,而328???32?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。