欢迎来到天天文库
浏览记录
ID:7370699
大小:245.17 KB
页数:44页
时间:2018-02-12
《自考线性代数(经管类)考点复习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式aa由4个数1112a(i,j≪1,2)得到下列式子:称为一个二阶行列式,ijaa2122其运算规则为aa1112≪aaaa11221221aa21222.三阶行列式aaa111213由9个数a(i,j≪1,2,3)得到下列式子:aaaij212223aaa313233称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式
2、中元素的余子式及代数余子式的概念.3.余子式及代数余子式aaa111213设有三阶行列式D≪aaa3212223aaa313233对任何一个元素a,我们划去它所在的第i行及第j列,剩下的元素按原ij先次序组成一个二阶行列式,称它为元素a的余子式,记成Mijijaaaaaa222312131213例如M≪,M≪,M≪112131aaaaaa323332332223再记ijA≪(1)M,称A为元素a的代数余子式.ijijijij例如A≪M,A≪M,A≪M111121213131那么,三阶行列式D定义为3aaa111213D≪aaa≪aAaAaA32122
3、23111121213131aaa313233我们把它称为D按第一列的展开式,经常简写成333i1D3≪ai1Ai1≪(1)ai1Mi1i≪1i≪14.n阶行列式一阶行列式D≪a≪a11111aa⋯a11121naa⋯a21222nn阶行列式D≪≪aAaA⋯aAn11112121n1n1⋯⋯⋯aa⋯an1n2nn其中Aij(,≪1,2,⋯,)n为元素a的代数余子式.ijij5.特殊行列式aa⋯a11121n0a⋯a上三角行列式222n≪aa⋯a1122nn⋯⋯⋯⋯00⋯anna0⋯011aa⋯0下三角行列式2122≪aa⋯a1122nn⋯⋯⋯⋯aa⋯
4、an1n2nna0⋯0110a⋯0对角行列式22≪aa⋯a1122nn⋯⋯⋯⋯00⋯ann(二)行列式的性质性质1行列式和它的转置行列式相等,即TD≪D性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质5把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对
5、应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式D≪a等于它的任意一行(列)的各元素与其对应的代ijn数余子式的乘积的和,即D≪aAaA⋯aA(i≪1,2,⋯,n)i1i1i2i2inin或D≪aAaA⋯aA(j≪1,2,⋯,n)1j1j2j2jnjnj前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2n阶行列式D≪a的任意一行(列)各元素与另一行(列)对ijn应元素的代数余子式的乘积之和等于零.即aAaA⋯aA≪0(ik)i1k1i2k2inkn或a
6、AaA⋯aA≪0(js)1j1s2j2snjns(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:21413121例1计算行列式D≪452327025解:观察到第二列第四行的元素为0,而且第二列第一
7、行的元素是a≪1,12利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.2141214156231212行11行5062D≪按第二列展开150452323行(2)1行10507257025702553123122列51列100按第二行展开≪813757375abbbbabb例2计算行列式D≪4bbabbbba解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为a3b(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一
8、列的公因子a3b,再将后三行都减去第一行:abbba3bbbb1bbbbabba3babb1abb≪≪(a3
此文档下载收益归作者所有