欢迎来到天天文库
浏览记录
ID:7305485
大小:417.64 KB
页数:24页
时间:2018-02-11
《the frequency domain approach of a time series》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、ChapterTheFrequencyDomainApproachofaTime4SeriesTheprecedingsectionsfocussedontheanalysisofatimeseriesinthetimedomain,mainlybymodellingandttinganARMA(p;q)-processtostationarysequencesofobservations.Anotherapproachtowardsthemodellingandanalysisoftimeseriesisviathefrequencydomain:Aseriesisoft
2、enthesumofawholevarietyofcycliccomponents,fromwhichwehadalreadyaddedtoourmodel(1.2)alongtermcycliconeorashorttermseasonalone.Inthefollowingweshowthatatimeseriescanbecompletelydecomposedintocycliccomponents.Suchcycliccomponentscanbedescribedbytheirperiodsandfrequencies.Theperiodistheinterval
3、oftimerequiredforonecycletocomplete.Thefrequencyofacycleisitsnumberofoccurrencesduringaxedtimeunit;inelectronicmedia,forexample,frequenciesarecommonlymeasuredinhertz,whichisthenumberofcyclespersecond,abbre-viatedbyHz.Theanalysisofatimeseriesinthefrequencydomainaimsatthedetectionofsuchcycle
4、sandthecomputationoftheirfrequencies.Notethatinthischaptertheresultsareformulatedforanydatay1;:::;yn,whichneedformathematicalreasonsnottobegeneratedbyastationaryprocess.Neverthelessitisreasonabletoapplytheresultsonlytorealizationsofstationaryprocesses,sincetheempiri-calautocovariancefunctio
5、noccurringbelowhasnointerpretationfornon-stationaryprocesses,seeExercise1.21.136TheFrequencyDomainApproachofaTimeSeries4.1LeastSquaresApproachwithKnownFrequenciesAfunctionf:R !RissaidtobeperiodicwithperiodP>0iff(t+P)=f(t)foranyt2R.Asmallestperiodiscalledafundamentalone.Thereciprocalvalue=1
6、=Pofafundamentalperiodisthefundamentalfrequency.Anarbitrary(time)intervaloflengthLconsequentlyshowsLcyclesofaperiodicfunctionfwithfundamentalfrequency.Popularexamplesofperiodicfunctionsaresineandcosine,whichbothhavethefundamentalperiodP=2.Theirfundamentalfrequency,therefore,is=1=(2).Th
7、epredominantfamilyofperiodicfunctionswithintimeseriesanalysisaretheharmoniccomponentsm(t):=Acos(2t)+Bsin(2t);A;B2R;>0;whichhaveperiod1=andfrequency.AlinearcombinationofharmoniccomponentsXr g(t):=+Akcos(2kt)+Bksin(2kt);2R;k=1willbenamedaharm
此文档下载收益归作者所有