欢迎来到天天文库
浏览记录
ID:7290206
大小:164.11 KB
页数:15页
时间:2018-02-10
《linear algebra and its applications convexity》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、CHAPTER12ConvexityConvexityisaprimitivenotion,basedonnothingbutthebarebonesofthestructureoflinearspacesoverthereals.Yetsomeofitsbasicresultsaresurprisinglydeep;furthermore,theseresultsmaketheirappearanceinanastonishinglywidevarietyoftopics.Xisalinearspaceoverthereals.Forany
2、pairofvectorsx,yinX,thelinesegmentwithendpointsxandyisdefinedasthesetofpointsinXofformax+(1-a)y,03、set.(c)K={x},asinglepoint.(d)K=anylinesegment.(e)LetlbealinearfunctioninX;thenthesetsl(x)=c,calledahyperplane,(2)l(x)4、ley&Sons,Inc.187188LINEARALGEBRAANDITSAPPLICATIONSConcreteExamplesofConvexSets(f)Xthespaceofallpolynomialswithrealcoefficients,Kthesubsetofallpolynomialsthatarepositiveateverypointoftheinterval(0,1).(g)Xthespaceofreal,self-adjointmatrices,Kthesubsetofpositivematrices.EXERCI5、SEI.Verifythattheseareconvexsets.Theorem1.(a)Theintersectionofanycollectionofconvexsetsisconvex.(b)Thesumoftwoconvexsetsisconvex,wherethesumoftwosetsKandHisdefinedasthesetofallsumsx+y,xinK,yinH.EXERCISE2.Provethesepropositions.UsingTheorem1,wecanbuildanastonishingvarietyofc6、onvexsetsoutofafewbasicones.Forinstance,atriangleintheplaneistheintersectionofthreehalf-planes.Definition.ApointxiscalledaninteriorpointofasetSinXifforeveryyinX,x+ytbelongstoSforallsufficientlysmallpositivet.Definition.AconvexsetKinXiscalledopenifeverypointinitisaninteriorp7、oint.EXERCISE3.Showthatanopenhalf-space(3)isanopenconvexset.EXERCISE4.ShowthatifAisanopenconvexsetandBisconvex,thenA+Bisopenandconvex.Definition.LetKbeanopenconvexsetthatcontainsthevector0.WedefineitsgaugefunctionpK=pasfollows:ForeveryxinX,p(x)=infr,r>OandxinK.(5)rEXERCISE58、.LetXbeaEuclideanspace,andletKbetheopenballofradiusacenteredattheorigin:11x11
3、set.(c)K={x},asinglepoint.(d)K=anylinesegment.(e)LetlbealinearfunctioninX;thenthesetsl(x)=c,calledahyperplane,(2)l(x)4、ley&Sons,Inc.187188LINEARALGEBRAANDITSAPPLICATIONSConcreteExamplesofConvexSets(f)Xthespaceofallpolynomialswithrealcoefficients,Kthesubsetofallpolynomialsthatarepositiveateverypointoftheinterval(0,1).(g)Xthespaceofreal,self-adjointmatrices,Kthesubsetofpositivematrices.EXERCI5、SEI.Verifythattheseareconvexsets.Theorem1.(a)Theintersectionofanycollectionofconvexsetsisconvex.(b)Thesumoftwoconvexsetsisconvex,wherethesumoftwosetsKandHisdefinedasthesetofallsumsx+y,xinK,yinH.EXERCISE2.Provethesepropositions.UsingTheorem1,wecanbuildanastonishingvarietyofc6、onvexsetsoutofafewbasicones.Forinstance,atriangleintheplaneistheintersectionofthreehalf-planes.Definition.ApointxiscalledaninteriorpointofasetSinXifforeveryyinX,x+ytbelongstoSforallsufficientlysmallpositivet.Definition.AconvexsetKinXiscalledopenifeverypointinitisaninteriorp7、oint.EXERCISE3.Showthatanopenhalf-space(3)isanopenconvexset.EXERCISE4.ShowthatifAisanopenconvexsetandBisconvex,thenA+Bisopenandconvex.Definition.LetKbeanopenconvexsetthatcontainsthevector0.WedefineitsgaugefunctionpK=pasfollows:ForeveryxinX,p(x)=infr,r>OandxinK.(5)rEXERCISE58、.LetXbeaEuclideanspace,andletKbetheopenballofradiusacenteredattheorigin:11x11
4、ley&Sons,Inc.187188LINEARALGEBRAANDITSAPPLICATIONSConcreteExamplesofConvexSets(f)Xthespaceofallpolynomialswithrealcoefficients,Kthesubsetofallpolynomialsthatarepositiveateverypointoftheinterval(0,1).(g)Xthespaceofreal,self-adjointmatrices,Kthesubsetofpositivematrices.EXERCI
5、SEI.Verifythattheseareconvexsets.Theorem1.(a)Theintersectionofanycollectionofconvexsetsisconvex.(b)Thesumoftwoconvexsetsisconvex,wherethesumoftwosetsKandHisdefinedasthesetofallsumsx+y,xinK,yinH.EXERCISE2.Provethesepropositions.UsingTheorem1,wecanbuildanastonishingvarietyofc
6、onvexsetsoutofafewbasicones.Forinstance,atriangleintheplaneistheintersectionofthreehalf-planes.Definition.ApointxiscalledaninteriorpointofasetSinXifforeveryyinX,x+ytbelongstoSforallsufficientlysmallpositivet.Definition.AconvexsetKinXiscalledopenifeverypointinitisaninteriorp
7、oint.EXERCISE3.Showthatanopenhalf-space(3)isanopenconvexset.EXERCISE4.ShowthatifAisanopenconvexsetandBisconvex,thenA+Bisopenandconvex.Definition.LetKbeanopenconvexsetthatcontainsthevector0.WedefineitsgaugefunctionpK=pasfollows:ForeveryxinX,p(x)=infr,r>OandxinK.(5)rEXERCISE5
8、.LetXbeaEuclideanspace,andletKbetheopenballofradiusacenteredattheorigin:11x11
此文档下载收益归作者所有