intro to mathematical statistics hogg chapter 2

intro to mathematical statistics hogg chapter 2

ID:7290048

大小:484.93 KB

页数:66页

时间:2018-02-10

intro to mathematical statistics hogg  chapter 2_第1页
intro to mathematical statistics hogg  chapter 2_第2页
intro to mathematical statistics hogg  chapter 2_第3页
intro to mathematical statistics hogg  chapter 2_第4页
intro to mathematical statistics hogg  chapter 2_第5页
资源描述:

《intro to mathematical statistics hogg chapter 2》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter2MultivariateDistributions2.1DistributionsofTwoRandomVariablesWebeginthediscussionofapairofrandomvariableswiththefollowingexample.Acoinistossedthreetimesandourinterestisintheorderednumberpair(numberofH’sonfirsttwotosses,numberofH’sonallthreetosses),whereHandTrepr

2、esent,respectively,headsandtails.LetC={TTT,TTH,THT,HTT,THH,HTH,HHT,HHH}denotethesamplespace.LetX1denotethenumberofH’sonthefirsttwotossesandX2denotethenumberofH’sonallthreeflips.Thenourinter-estcanberepresentedbythepairofrandomvariables(X1,X2).Forexample,(X1(HTH),X2(HTH))

3、representstheoutcome(1,2).Continuinginthisway,X1andX2arereal-valuedfunctionsdefinedonthesamplespaceC,whichtakeusfromthesamplespacetothespaceoforderednumberpairs.D={(0,0),(0,1),(1,1),(1,2),(2,2),(2,3)}.ThusX1andX2aretworandomvariablesdefinedonthespaceC,and,inthisexample,t

4、hespaceoftheserandomvariablesisthetwo-dimensionalsetD,whichisasubsetoftwo-dimensionalEuclideanspaceR2.Hence(X,X)isavector12functionfromCtoD.Wenowformulatethedefinitionofarandomvector.Definition2.1.1(RandomVector).GivenarandomexperimentwithasamplespaceC,considertworandomv

5、ariablesX1andX2,whichassigntoeachelementcofConeandonlyoneorderedpairofnumbersX1(c)=x1,X2(c)=x2.Thenwesaythat(X1,X2)isarandomvector.Thespaceof(X1,X2)isthesetoforderedpairsD={(x1,x2):x1=X1(c),x2=X2(c),c∈C}.WeoftendenoterandomvectorsusingvectornotationX=(X,X),where12thede

6、notesthetransposeoftherowvector(X,X).12LetDbethespaceassociatedwiththerandomvector(X1,X2).LetAbeasubsetofD.Asinthecaseofonerandomvariable,wespeakoftheeventA.WewishtodefinetheprobabilityoftheeventA,whichwedenotebyPX1,X2[A].As7374MultivariateDistributionswithrandomvariabl

7、esinSection1.5wecanuniquelydefinePX1,X2intermsofthecumulativedistributionfunction(cdf),whichisgivenbyFX1,X2(x1,x2)=P[{X1≤x1}∩{X2≤x2}],(2.1.1)forall(x,x)∈R2.BecauseXandXarerandomvariables,eachoftheevents1212intheaboveintersectionandtheintersectionoftheeventsareeventsinth

8、eoriginalsamplespaceC.Thustheexpressioniswelldefined.Aswithrandomvariables,wewriteP[{X1≤x1}∩{X2≤x2}]asP[X1≤x1,X2≤x2].A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。