开关电源的共模干扰抑制技术

开关电源的共模干扰抑制技术

ID:7289764

大小:127.00 KB

页数:6页

时间:2018-02-10

开关电源的共模干扰抑制技术_第1页
开关电源的共模干扰抑制技术_第2页
开关电源的共模干扰抑制技术_第3页
开关电源的共模干扰抑制技术_第4页
开关电源的共模干扰抑制技术_第5页
资源描述:

《开关电源的共模干扰抑制技术》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、开关电源的共模干扰抑制技术

2、开关电源共模电磁干扰(EMI)对策详解0   引言      由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。      传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中

3、。理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。      1   补偿原理      共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。如图1所示。共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。图2给出了这种新型共

4、模噪声抑制电路所依据的本质概念。开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。图1   CM及DM噪声电流的耦合路径示意图图2   提出的共模噪声消除方法      2   基于补偿原理的共模干扰抑制技术在开

5、关电源中的应用      本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。图3给出了典型单端反激变换器的拓扑结构,并加入了新的共模噪声抑制电路。如图3所示,从开关器件过来的d/d所导致的寄生电流para注入接地层,附加抑制电路产生的反相噪声补偿电流comp也同时注入接地层。理想的状况就是这两股电流相加为零,从而大大减少了流向LISN电阻的共模电流。利用现有电路中的电源变压器磁芯,在原绕组结构上再增加一个附加绕组NC。由于该绕组只需流过由补偿电容comp产生的反向噪声电流,所以它的线径相对原副方的P及S

6、绕组显得很小(由实际装置的设计考虑决定)。附加电路中的补偿电容comp主要是用来产生和由寄生电容para引起的寄生噪声电流反相的补偿电流。comp的大小由para和绕组匝比P∶C决定。如果P∶C=1,则comp的电容值取得和para相当;若P∶C≠1,则comp的取值要满足comp=para·d/d。图3   带无源共模抑制电路的隔离型反激变换器      此外,还可以通过改造诸如Buck,Half-bridge等DC/DC变换器中的电感或变压器,从而形成无源补偿电路,实现噪声的抑制,如图4,图5所示。图4   带有无源共模抑制电路

7、的半桥隔离式DC/DC变换器图5   带有无源共模抑制电路的Buck变换器3   实验及结果      实验采用了一台5kW/50Hz艇用逆变器的单端反激辅助电源作为实验平台。交流调压器的输出经过LISN送入整流桥,整流后的直流输出作为反激电路的输入。多点测得开关管集电极对实验地(机壳)的寄生电容大约为80pF,鉴于实验室现有的电容元件,取用了一个100pF,耐压1kV的瓷片电容作为补偿电容。一接地铝板作为实验桌面,LISN及待测反激电源的外壳均良好接地。图6是补偿绕组电压和原方绕组电压波形。补偿绕组精确的反相重现了原方绕组的波形。

8、图7是流过补偿电容的电流和开关管散热器对地寄生电流的波形。从图7可以看出,补偿电流和寄生电流波形相位相差180°,在一些波形尖刺方面也较好地吻合。但是,由于开关管的金属外壳为集电极且与散热器相通,散热器形状的不规则导致了开关管寄生电容测量的不确定性。由图7可见,补偿电流的幅值大于实际寄生电流,说明补偿电容的取值与寄生电容的逼近程度不够好,取值略偏大。图8给出了补偿电路加入前后,流入LISN接地线的共模电流波形比较。经过共模抑制电路的电流平衡后,共模电流的尖峰得到了很好的抑制,实验数据表明,最大的抑制量大约有14mA左右。 图6   

9、补偿绕组电压和原方绕组电压波形图7   补偿电容电流和对地寄生电流波形图8   补偿前后流入LISN地的共模电流波形(电流卡钳系数:100mV/A)      图9是用AgilentE4402B频谱分析仪测得的共模电流的频谱波形。可见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。