transition densities via lie symmetry methods

transition densities via lie symmetry methods

ID:7288300

大小:665.00 KB

页数:19页

时间:2018-02-10

transition densities via lie symmetry methods_第1页
transition densities via lie symmetry methods_第2页
transition densities via lie symmetry methods_第3页
transition densities via lie symmetry methods_第4页
transition densities via lie symmetry methods_第5页
资源描述:

《transition densities via lie symmetry methods》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter5TransitionDensitiesviaLieSymmetryMethodsInthischapter,wediscusshowtoobtainexplicittransitiondensitiesandLaplacetransformsofjointtransitiondensitiesforvariousdiffusionsusingLiesymmetrymethods.Webeginwithamotivatingexample,andsubsequentlypresenttwocau-tionaryexamples.Thechapt

2、ercontinueswithtransitiondensities,whichcouldhaveusefulapplicationsinÞnanceorotherareasofapplication,butarenewandhavethereforenotreceivedsofarmuchattentionintheliterature.Itishopedthatthischapterencouragesreaderstoconstructtheirownexamplesandapplythemtoprob-lemstheyencounter.Subseq

3、uently,wepresentLaplacetransformsofjointtransitiondensitiesinSect.5.4.Section5.5illustrateshowLiesymmetrymethodscanbepow-erfullycombinedwithprobabilitytheorytoenlargethescopeofresultsthatcanbeobtained.5.1AMotivatingExampleInthissection,weÞrstlypresentanexample,whichexempliÞeshowexp

4、licittransi-tiondensitiescanbefoundviaLiesymmetrymethods.ThesquaredBesselprocesssitsattheheartofthedevelopmentsinChap.3,andourmotivatingexampleisalsobasedonthisprocess.Consequently,weconsiderasquaredBesselprocessofdimensionδ,δ≥2,dXt=δdt+2XtdWt,whereX0=x>0,whosetransitiondensitysat

5、isÞestheKolmogorovbackwardequationut=2xuxx+δux.HenceinEq.(4.4.1),wesetσ=2,f=δ,g=0,andγ=1,andinEq.(4.4.34),weδ2seth=δ,A=0,B=−2δ+.Now,weemployTheorem4.4.3withu(x,t)=12andF(x)=δlnxtoobtain4x−δU(x,t)=exp−(1+4t)σ,(5.1.1)σ(1+4t)J.Baldeaux,E.Platen,FunctionalsofMultidimensionalDiffu

6、sionswithApplications141toFinance,Bocconi&SpringerSeries5,DOI10.1007/978-3-319-00747-2_5,©SpringerInternationalPublishingSwitzerland20131425TransitionDensitiesviaLieSymmetryMethodswhereσ=2.Setting=σλinEq.(5.1.1),weobtaintheLaplacetransform4∞Uλ(x,t)=exp{−λy}p(t,x,y)dy0xλ−δ=exp−(

7、1+2λt)2,1+2λtwhichiseasilyinvertedtoyieldν√1x2xy(x+y)p(t,x,y)=Iνexp−,(5.1.2)2tyt2twhereν=δ−1denotestheindexofthesquaredBesselprocess.Ofcourse,2Eq.(5.1.2)showsthetransitiondensityofasquaredBesselprocessstartedattime0inxforbeingattimetiny.RecallthatIνdenotesthemodiÞedBesselfuncti

8、onoftheÞrstkind,andthatwep

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。