harris and topological recurrence

harris and topological recurrence

ID:7288299

大小:253.97 KB

页数:30页

时间:2018-02-10

harris and topological recurrence_第1页
harris and topological recurrence_第2页
harris and topological recurrence_第3页
harris and topological recurrence_第4页
harris and topological recurrence_第5页
资源描述:

《harris and topological recurrence》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter9HarrisandtopologicalrecurrenceInthischapterweconsiderstrongerconceptsofrecurrenceandlinkthemwiththedichotomyprovedinChapter8.Wealsoconsiderseveralobviousdefinitionsofglobalandlocalrecurrenceandtransienceforchainsontopologicalspaces,andshowthattheyalsolinktothefundamentaldichotomy.Ind

2、evelopingconceptsofrecurrenceforsetsA∈B(X),wewillconsidernotjustthefirsthittingtimeτA,ortheexpectedvalueU(·,A)ofηA,butalsotheeventthatΦ∈Ainfinitelyoften(i.o.),orηA=∞,definedby∞*∞{Φ∈Ai.o.}:={Φk∈A}N=1k=NwhichiswelldefinedasanF-measurableeventonΩ.Forx∈X,A∈B(X)wewriteQ(x,A):=Px{Φ∈Ai.o.}:(9.1)obvio

3、usly,foranyx,AwehaveQ(x,A)≤L(x,A),andbythestrongMarkovpropertywehaveQ(x,A)=Ex[PΦτ{Φ∈Ai.o.}I{τA<∞}]=UA(x,dy)Q(y,A).(9.2)AAHarrisrecurrenceThesetAiscalledHarrisrecurrentifQ(x,A)=Px(ηA=∞)=1,x∈A.AchainΦiscalledHarris(recurrent)ifitisψ-irreducibleandeverysetinB+(X)isHarrisrecurrent.199200Harris

4、andtopologicalrecurrenceWewillseeinTheorem9.1.4thatwhenA∈B+(X)andΦisHarrisrecurrenttheninfactwehavetheseeminglystrongerandperhapsmorecommonlyusedpropertythatQ(x,A)=1foreveryx∈X.ItisobviousfromthedefinitionsthatifasetisHarrisrecurrent,thenitisrecurrent.Indeed,intheformulationabovethestrengthe

5、ningfromrecurrencetoHarrisrecurrenceisquiteexplicit,indicatingamovefromanexpectedinfinityofvisitstoanalmostsurelyinfinitenumberofvisitstoaset.ThisdefinitionofHarrisrecurrenceappearsonthefaceofittobestrongerthanrequiringL(x,A)≡1forx∈A,whichisastandardalternativedefinitionofHarrisrecurrence.Inone

6、ofthekeyresultsofthissection,Proposition9.1.1,weprovethattheyareinfactequivalent.ThehighlightoftheHarrisrecurrenceanalysisisTheorem9.0.1.IfΦisrecurrent,thenwecanwriteX=H∪N(9.3)whereHisabsorbingandnon-emptyandeverysubsetofHinB+(X)isHarrisrecur-rent;andNisψ-nullandtransient.ProofThisisproved,

7、inaslightlystrongerform,inTheorem9.1.5.Hencearecurrentchaindiffersonlybyaψ-nullsetfromaHarrisrecurrentchain.IngeneralwecanthenrestrictanalysistoHandderiveverymuchstrongerresultsusingpropertiesofHarrisrecurrentchains.ForchainsonacountablespacethenullsetNi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。