资源描述:
《filtering and smoothing techniques-presenting time series analysis》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、Chapter4Filteringandsmoothingtechniques4.1Presentingthechallenge4.1.1DescribingtheproblemDynamicalsystemsarecharacterisedbytwotypesofnoise,wherethefirstoneiscalledobservationaloradditivenoise,andthesecondoneiscalleddynamicalnoise.Intheformer,thesystemisunaffectedbythisno
2、ise,insteadthenoiseisameasurementproblem.Theobserverhastroublepreciselymeasuringtheoutputofthesystem,leadingtorecordedvalueswithaddednoiseincrement.Thisadditivenoiseisexternaltotheprocess.Inthelatter,thesysteminterpretsthenoisyoutputasaninput,leadingtodynamicalnoisebeca
3、usethenoiseinvadesthesystem.Dynamicalnoisebeinginherenttofinancialtimeseries,wearenowgoingtosummarisesomeofthetoolsproposedinstatisticalanalysisandsignalprocessingtofilteritout.Infinancialtimeseriesanalysis,thetrendisthecomponentcontainingtheglobalchange,whilethelocalchang
4、esarerepresentedbynoise.Ingeneral,thetrendischaracterisedbyasmoothfunctionrepresentinglong-termmovement.Hence,trendsshouldexhibitslowchanges,whilenoiseisassumedtobehighlyvolatile.Trendfiltering(TF)attemptsatdifferentiatingmeaningfulinformationfromexogenousnoise.Thesepara
5、tionbetweentrendandnoiseliesatthecoreofmodernstatisticsandtimeseriesanalysis.TFisgenerallyusedtoanalysethepastbytransforminganynoisysignalintoasmootherone.Itcanalsobeusedasapredictivetool,butitcannotbeperformedonanytimeseries.Forinstance,trendfollowingpredictionssuppose
6、thatthelastobservedtrendinfluencesfuturereturns,butthetrendmaynotpersistinthefuture.Aphysicalprocesscanbedescribedeitherinthetimedomain,bythevaluesofsomequantityhasafunctionoftimeh(t),orinthefrequencydomainwheretheprocessisspecifiedbygivingitsamplitudeHasafunctionoffreque
7、ncyf,thatis,H(f)with 18、filteringtoeliminatenoiseatloworhighfrequencies,orrequiringabandpassfilteriftheinterestingpartofthesignalliesonl