morse functions and their gradients

morse functions and their gradients

ID:7280120

大小:347.68 KB

页数:34页

时间:2018-02-10

morse functions and their gradients_第1页
morse functions and their gradients_第2页
morse functions and their gradients_第3页
morse functions and their gradients_第4页
morse functions and their gradients_第5页
资源描述:

《morse functions and their gradients》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、CHAPTER2MorsefunctionsandtheirgradientsAcriticalpointpofaC∞functionfonamanifoldiscallednon-degenerateifthebilinearformf(p):Tp(M)×Tp(M)→Risnon-degenerate.Theindexofthisformiscalledtheindexofp.AMorsefunctiononamanifoldisaC∞function,suchthatitscriticalpoin

2、tsareallnon-degenerate.WebeginwiththeclassicalMorselemma,whichsaysthateveryMorsefunctioninaneighbourhoodofitscriticalpointofindexkisdiffeomorphictothefunctionQk+const,whereQkisaquadraticformofindexk.WeprovethenthatthesubsetofallMorsefunctionsonaclosedman-i

3、foldisopenanddenseinthesetofallC∞functionsonthemanifold(Theorem1.30;thisresultisdeducedfromamoregeneralTheorem1.25).InthesecondsectionweintroducethegradientsofMorsefunctionsandforms.Recallthatthegradientofadifferentiablefunctionf:Rm→Risthevectorfield∂f∂fg

4、radf(x)=(x),...,(x).∂x1∂xmThenotionofgradientgeneralizesimmediatelytosmoothfunctionsonRiemannianmanifolds.Forsuchafunctionf:M→Rthevectorfieldgradfisdefinedbytheformulagradf(x),h=f(x)(h)(wherex∈M,h∈TxMand·,·standsforthescalarproductinducedbytheRiemannia

5、nmetriconTxM).ThisvectorfieldwillbecalledtheRiemanniangradientoff.Thefunctionfisstrictlyincreasingalonganynon-constantintegralcurveγofgradf,since(f◦γ)(t)=f(γ(t))(γ(t))=

6、

7、gradf(γ(t))

8、

9、2.Thusthepropertiesoffandtheflowgeneratedbygradfarecloselyrelatedtoeach

10、other.Ingeneralonecanusefunctionsincreasingalongeachtrajectoryofagivenvectorfieldvtostudythedynamicsoftheflowgeneratedbyv.ThisapproachwasdeeplyexploredbyA.M.Liapounov(seehisthesisdefendedin1892,andtranslatedintoFrenchin[88]).34Chapter2.MorsefunctionsInMorse

11、theorythenotionofgradientdescentwasusedalreadyintheseminalarticle[98]ofM.Morse.AveryconvenientclassofgradientflowswasintroducedandextensivelyusedbyJ.Milnorinhisbook[92]:Definition0.1([92],§3).LetMbeamanifold,f:M→RbeaMorsefunction.Avectorfieldviscalledagradie

12、nt-likevectorfieldforf,if1)foreverynon-criticalpointxoffwehave:f(x)(v(x))>0,2)foreverycriticalpointpoffthereisachartΨ:U→V⊂RmforM,suchthat(F)f◦Ψ−1(x,...,x)=f(p)−(x2+···+x2)+(x2+···+x2),1m1kk+1m(G)Ψ∗(v)(x1,...,xm)=(−x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。