资源描述:
《morse functions and their gradients》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、CHAPTER2MorsefunctionsandtheirgradientsAcriticalpointpofaC∞functionfonamanifoldiscallednon-degenerateifthebilinearformf(p):Tp(M)×Tp(M)→Risnon-degenerate.Theindexofthisformiscalledtheindexofp.AMorsefunctiononamanifoldisaC∞function,suchthatitscriticalpoin
2、tsareallnon-degenerate.WebeginwiththeclassicalMorselemma,whichsaysthateveryMorsefunctioninaneighbourhoodofitscriticalpointofindexkisdiffeomorphictothefunctionQk+const,whereQkisaquadraticformofindexk.WeprovethenthatthesubsetofallMorsefunctionsonaclosedman-i
3、foldisopenanddenseinthesetofallC∞functionsonthemanifold(Theorem1.30;thisresultisdeducedfromamoregeneralTheorem1.25).InthesecondsectionweintroducethegradientsofMorsefunctionsandforms.Recallthatthegradientofadifferentiablefunctionf:Rm→Risthevectorfield∂f∂fg
4、radf(x)=(x),...,(x).∂x1∂xmThenotionofgradientgeneralizesimmediatelytosmoothfunctionsonRiemannianmanifolds.Forsuchafunctionf:M→Rthevectorfieldgradfisdefinedbytheformulagradf(x),h=f(x)(h)(wherex∈M,h∈TxMand·,·standsforthescalarproductinducedbytheRiemannia
5、nmetriconTxM).ThisvectorfieldwillbecalledtheRiemanniangradientoff.Thefunctionfisstrictlyincreasingalonganynon-constantintegralcurveγofgradf,since(f◦γ)(t)=f(γ(t))(γ(t))=
6、
7、gradf(γ(t))
8、
9、2.Thusthepropertiesoffandtheflowgeneratedbygradfarecloselyrelatedtoeach
10、other.Ingeneralonecanusefunctionsincreasingalongeachtrajectoryofagivenvectorfieldvtostudythedynamicsoftheflowgeneratedbyv.ThisapproachwasdeeplyexploredbyA.M.Liapounov(seehisthesisdefendedin1892,andtranslatedintoFrenchin[88]).34Chapter2.MorsefunctionsInMorse
11、theorythenotionofgradientdescentwasusedalreadyintheseminalarticle[98]ofM.Morse.AveryconvenientclassofgradientflowswasintroducedandextensivelyusedbyJ.Milnorinhisbook[92]:Definition0.1([92],§3).LetMbeamanifold,f:M→RbeaMorsefunction.Avectorfieldviscalledagradie
12、nt-likevectorfieldforf,if1)foreverynon-criticalpointxoffwehave:f(x)(v(x))>0,2)foreverycriticalpointpoffthereisachartΨ:U→V⊂RmforM,suchthat(F)f◦Ψ−1(x,...,x)=f(p)−(x2+···+x2)+(x2+···+x2),1m1kk+1m(G)Ψ∗(v)(x1,...,xm)=(−x