measure theory product measures

measure theory product measures

ID:7279991

大小:194.37 KB

页数:12页

时间:2018-02-10

measure theory product measures_第1页
measure theory product measures_第2页
measure theory product measures_第3页
measure theory product measures_第4页
measure theory product measures_第5页
资源描述:

《measure theory product measures》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter5ProductMeasuresIncalculuscoursesonedefinesintegralsovertwo-(orhigher-)dimensionalregionsandthenevaluatestheseintegralsbyapplyingtheusualtechniquesofintegration,onevariableatatime.InthischapterweshowthatsimilartechniquesworkfortheLebesgueintegral.Moregenerally,givenσ-finitemeasure

2、sμandνonspacesXandY,wefirstdefineanaturalproductmeasureontheproductspaceX×Y(Sect.5.1).ThenwelookathowintegralswithrespecttothisproductmeasurecanbeevaluatedintermsofintegralswithrespecttoμandνoverXandY(Sect.5.2).Thechapterendswithafewapplications(Sect.5.3).5.1ConstructionsLet(X,A)and(Y,B)

3、bemeasurablespaces,and,asusual,letX×YbetheCartesianproductofthesetsXandY.AsubsetofX×YisarectanglewithmeasurablesidesifithastheformA×BforsomeAinAandsomeBinB;theσ-algebraonX×Ygeneratedbythecollectionofallrectangleswithmeasurablesidesiscalledtheproductoftheσ-algebrasAandBandisdenotedbyA×B

4、.Example5.1.1.ConsiderthespaceR2.Thisis,ofcourse,aCartesianproduct,theproductofRwithitself.Letusshowthattheproductσ-algebraB(R)×B(R)isequaltotheσ-algebraB(R2)ofBorelsubsetsofR2.RecallthatB(R2)isgeneratedbythecollectionofallsetsoftheform(a,b]×(c,d](Proposition1.1.5).ThusB(R2)isgenerated

5、byasubfamilyoftheσ-algebraB(R)×B(R)andsoisincludedinB(R)×B(R).Weturntothereverseinclusion.Theprojectionsπ1andπ2ofR2ontoRdefinedbyπ1(x,y)=xandπ2(x,y)=yarecontinuousandhenceBorelmeasurable(Example2.1.2(a)).ItfollowsfromthisandtheidentityA×B=(A×R)∩(R×B)=π−1(A)∩π−1(B)12D.L.Cohn,MeasureTheor

6、y:SecondEdition,BirkhauserAdvanced¨143TextsBaslerLehrb¨ucher,DOI10.1007/978-1-4614-6956-85,©SpringerScience+BusinessMedia,LLC20131445ProductMeasuresthatifAandBbelongtoB(R),thenA×BbelongstoB(R2).SinceB(R)×B(R)istheσ-algebrageneratedbythecollectionofallsuchrectanglesA×B,itmustbeincludedi

7、nB(R2).ThusB(R)×B(R)=B(R2).Letusintroducesometerminologyandnotation.SupposethatXandYaresetsandthatEisasubsetofX×Y.ThenforeachxinXandeachyinYthesectionsExandEyarethesubsetsofYandXgivenbyEx={y∈Y:(x,y)∈E}andEy={x∈X:(x,y)∈E}.IffisafunctiononX×Y,thenthesectionsfxandfyarethefunctionsonYan

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。