欢迎来到天天文库
浏览记录
ID:7279880
大小:273.58 KB
页数:29页
时间:2018-02-10
《linearalgebraanditsapplications matrix inequalities》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、CHAPTER10MatrixInequalitiesInthischapterwestudyself-adjointmappingsofaEuclideanspaceintoitselfthatarepositive.InSection1westateandprovethebasicpropertiesofpositivemappingsandpropertiesoftherelationA2、sitivematrices.InSection3westudythedependenceoftheeigenvaluesonthematrixinlightofthepartialorderA3、nofapositivemapping:Definition.Aself-adjointlinearmappingHfromarealorcomplexEuclideanspaceintoitselfiscalledpositiveif(x,Hx)>0forallx#0.(1)PositivityofHisdenotedasH>0or00forallx.(2)N4、onnegativityofKisdenotedasK>0or0_5、sitive.(ii)IfMandNarepositive,soistheirsumM+N,aswellasaMforanypositivenumbera.(iii)IfHispositiveandQisinvertible,thenQ*HQ>O.(3)(iv)Hispositiveifallitseigenvaluesarepositive.(v)Everypositivemappingisinvertible.(vi)Everypositivemappinghasapositivesquareroot,6、uniquelydetermined.(vii)Thesetofallpositivemapsisanopensubsetofthespaceofallself-adjointmaps.(viii)Theboundarypointsofthesetofallpositivemapsarenonnegativemapsthatarenotpositive.Proof.Part(i)isaconsequenceofthepositivityofthescalarproduct;part(ii)isobvious7、.Forpart(iii)wewritethequadraticformassociatedwithQ"HQas(x,Q`HQx)=(Qx,HQx)=(y,Hy),(3)'wherey=Qx.SinceQisinvertible,ifx#0,y#0,andsoby(1)theright-handsideof(3)'ispositive.Toprove(iv),lethbeaneigenvectorofH,atheeigenvalueHh=ah.Takingthescalarproductwithhweget8、(h,Hh)=a(h,h);clearly,thisispositiveonlyifa>0.Thisshowsthattheeigenvaluesofapositivemappingarepositive.Toshowtheconverse,weappealtoTheorem4ofChapter8,accordingtowhicheveryself-adjointmappingHhasanorthonormalb
2、sitivematrices.InSection3westudythedependenceoftheeigenvaluesonthematrixinlightofthepartialorderA3、nofapositivemapping:Definition.Aself-adjointlinearmappingHfromarealorcomplexEuclideanspaceintoitselfiscalledpositiveif(x,Hx)>0forallx#0.(1)PositivityofHisdenotedasH>0or00forallx.(2)N4、onnegativityofKisdenotedasK>0or0_5、sitive.(ii)IfMandNarepositive,soistheirsumM+N,aswellasaMforanypositivenumbera.(iii)IfHispositiveandQisinvertible,thenQ*HQ>O.(3)(iv)Hispositiveifallitseigenvaluesarepositive.(v)Everypositivemappingisinvertible.(vi)Everypositivemappinghasapositivesquareroot,6、uniquelydetermined.(vii)Thesetofallpositivemapsisanopensubsetofthespaceofallself-adjointmaps.(viii)Theboundarypointsofthesetofallpositivemapsarenonnegativemapsthatarenotpositive.Proof.Part(i)isaconsequenceofthepositivityofthescalarproduct;part(ii)isobvious7、.Forpart(iii)wewritethequadraticformassociatedwithQ"HQas(x,Q`HQx)=(Qx,HQx)=(y,Hy),(3)'wherey=Qx.SinceQisinvertible,ifx#0,y#0,andsoby(1)theright-handsideof(3)'ispositive.Toprove(iv),lethbeaneigenvectorofH,atheeigenvalueHh=ah.Takingthescalarproductwithhweget8、(h,Hh)=a(h,h);clearly,thisispositiveonlyifa>0.Thisshowsthattheeigenvaluesofapositivemappingarepositive.Toshowtheconverse,weappealtoTheorem4ofChapter8,accordingtowhicheveryself-adjointmappingHhasanorthonormalb
3、nofapositivemapping:Definition.Aself-adjointlinearmappingHfromarealorcomplexEuclideanspaceintoitselfiscalledpositiveif(x,Hx)>0forallx#0.(1)PositivityofHisdenotedasH>0or00forallx.(2)N
4、onnegativityofKisdenotedasK>0or0_5、sitive.(ii)IfMandNarepositive,soistheirsumM+N,aswellasaMforanypositivenumbera.(iii)IfHispositiveandQisinvertible,thenQ*HQ>O.(3)(iv)Hispositiveifallitseigenvaluesarepositive.(v)Everypositivemappingisinvertible.(vi)Everypositivemappinghasapositivesquareroot,6、uniquelydetermined.(vii)Thesetofallpositivemapsisanopensubsetofthespaceofallself-adjointmaps.(viii)Theboundarypointsofthesetofallpositivemapsarenonnegativemapsthatarenotpositive.Proof.Part(i)isaconsequenceofthepositivityofthescalarproduct;part(ii)isobvious7、.Forpart(iii)wewritethequadraticformassociatedwithQ"HQas(x,Q`HQx)=(Qx,HQx)=(y,Hy),(3)'wherey=Qx.SinceQisinvertible,ifx#0,y#0,andsoby(1)theright-handsideof(3)'ispositive.Toprove(iv),lethbeaneigenvectorofH,atheeigenvalueHh=ah.Takingthescalarproductwithhweget8、(h,Hh)=a(h,h);clearly,thisispositiveonlyifa>0.Thisshowsthattheeigenvaluesofapositivemappingarepositive.Toshowtheconverse,weappealtoTheorem4ofChapter8,accordingtowhicheveryself-adjointmappingHhasanorthonormalb
5、sitive.(ii)IfMandNarepositive,soistheirsumM+N,aswellasaMforanypositivenumbera.(iii)IfHispositiveandQisinvertible,thenQ*HQ>O.(3)(iv)Hispositiveifallitseigenvaluesarepositive.(v)Everypositivemappingisinvertible.(vi)Everypositivemappinghasapositivesquareroot,
6、uniquelydetermined.(vii)Thesetofallpositivemapsisanopensubsetofthespaceofallself-adjointmaps.(viii)Theboundarypointsofthesetofallpositivemapsarenonnegativemapsthatarenotpositive.Proof.Part(i)isaconsequenceofthepositivityofthescalarproduct;part(ii)isobvious
7、.Forpart(iii)wewritethequadraticformassociatedwithQ"HQas(x,Q`HQx)=(Qx,HQx)=(y,Hy),(3)'wherey=Qx.SinceQisinvertible,ifx#0,y#0,andsoby(1)theright-handsideof(3)'ispositive.Toprove(iv),lethbeaneigenvectorofH,atheeigenvalueHh=ah.Takingthescalarproductwithhweget
8、(h,Hh)=a(h,h);clearly,thisispositiveonlyifa>0.Thisshowsthattheeigenvaluesofapositivemappingarepositive.Toshowtheconverse,weappealtoTheorem4ofChapter8,accordingtowhicheveryself-adjointmappingHhasanorthonormalb
此文档下载收益归作者所有