哥尼斯堡七桥问题:模型应用

哥尼斯堡七桥问题:模型应用

ID:7246109

大小:59.50 KB

页数:4页

时间:2018-02-08

哥尼斯堡七桥问题:模型应用_第1页
哥尼斯堡七桥问题:模型应用_第2页
哥尼斯堡七桥问题:模型应用_第3页
哥尼斯堡七桥问题:模型应用_第4页
资源描述:

《哥尼斯堡七桥问题:模型应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、【模型应用】例1观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法. (a)图:可以一笔画,因为只有两个奇点A、B;画法为A→头部→翅膀→尾部→翅膀→嘴。 (b)图:不能一笔画,因为此图不是连通图。 (c)图:不能一笔画,因图中有四个奇点:A、B、C、D。 (d)图:不能一笔画,因为此图不是连通图。 (e)图:可以一笔画,因为没有奇点;画法可以是:A→B→C→D→E→F→G→H→I→J→B→D→F→H→J→A。 (f)图:不能一笔画出,因为图中有八个奇点。  注意:在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图

2、来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点。例2下图是国际奥委会的会标,你能一笔把它画出来吗?  一个图能否一笔画出,关键取决于这个图中奇点的个数.通过观察可以发现,上图中所有的结点都是偶点,因此,这个图可以一笔画出.画时可以任一结点作为起点。例3下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?这种应用题,表面看起来不易解决,事实上,只要认真分析,就可以发现:我们并不关心展室的大小以

3、及路程的远近,关心的只是能否一次不重复地走遍所有的门,与七桥问题较为类似.因此,仿照七桥问题的解法,我们可以把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A。  上图(b)中,所有的结点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.  下面仅给出一种参观路线:  A→E→B→C→E→F→C→D→F→A。注意

4、:本题中,必须以A分别作为起点和终点.这就要求图中必须没有奇点,否则,若有两个奇点,虽能一笔画出,但与从入口入、出口出(即游人的出发和终止点都在展厅外)有矛盾,其他有多个奇点的情况则根本不可能一笔画出。另外,通过前面的学习,大家已经知道:一个图如果能够一笔画出,则画的方法不止一种,但各种方法大同小异.因此,一般我们只给出一种画法。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。