欢迎来到天天文库
浏览记录
ID:7235038
大小:32.50 KB
页数:3页
时间:2018-02-08
《跨世纪物理学的几个活跃领域和发展趋势》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、跨世纪物理学的几个活跃领域和发展趋势20074051010冉秀渊 20世纪是科学技术飞速发展的时代。在这个时代,目睹了人类分裂原子、拼接基因、克隆动物、开通信息高速公路、纳米加工和探索太空。很难设想,若没有科学技术的飞速发展,没有原子能、没有计算机、没有半导体,现代生活将是什么样子。与科学技术的发展一样,物理学也经历了极其深刻的革命。可以说,物理学每时每刻都在不停的发展,其活跃的前沿领域很多,是最有生命力、成果最多的学科之一。 一、21世纪物理学的几个活跃领域 蒸蒸日上的凝聚态物理学 自从
2、80年代中期发现了所谓高临界温度超导体以来,世界上对这种应用潜力很大的新材料的研究热情和乐观情绪此起彼伏,时断时续。这种新材料能在液氮温区下传导电流而没有阻抗。高临界温度超导材料的研究仍是今后凝聚态物理学中活跃的领域之一。目前,许多国家的科学工作者仍在争分夺秒,继续进行竞争,向更高温区,甚至室温温区超导材料的研究和应用努力。可以预计,这个势头今后也不会减弱,此外,高临界温度的超导材料的机械性能、韧性强度和加工成材工艺也需进一步提高和解决。科学家们预测,21世纪初,这些技术问题可以得到解决并将有广泛的应用前
3、景,有可能会引起一场新的工业革命。超导电机、超导磁悬浮列车、超导船、超导计算机等将会面向市场,届时,世界超导材料市场可望达到2000亿美元。 由不同材料的薄膜交替组成的超晶格材料可望成为新一代的微电子、光电子材料。超晶格材料诞生于20世纪70年代末,在短短不到30年的时间内,已逐步揭示出其微观机制和物理图像。目前已利用半导体超晶格材料研制成许多新器件,它可以在原子尺度上对半导体的组分掺杂进行人工“设计”,从而可以研究一般半导体中根本不存在的物理现象,并将固态电子器件的应用推向一个新阶段。但目前对于其他类
4、型的超晶格材料的制备尚需做进一步的努力。一些科学家预测,下一代的电子器件可能会被微结构器件替代,从而可能会带来一场电子工业的革命。微结构物理的研究还有许多新的物理现象有待于揭示。21世纪可能会硕果累累,它的前景不可低估。 近年来,两种与磁阻有关的引起人们强烈兴趣的现象就是所谓的巨磁阻和超巨磁阻现象。一般磁阻是物质的电阻率在磁场中会发生轻微的变化,而巨磁和超巨磁可以是几倍或数千倍的变化。超巨磁现象中令人吃惊的是,在很强的磁场中某些绝缘体会突变为导体,这种原因尚不清楚,就像高临界温度超导材料超导性的原因难以
5、捉摸一样。目前,巨磁和超巨磁实现应用的主要障碍是强磁场和低温的要求,预计下世纪初在这方面会有很大的进展,并会有诱人的应用前景。 可以预计,新材料的发展是21世纪凝聚态物理学研究重要的发展方向之一。新材料的发展趋势是:复合化、功能特殊化、性能极限化和结构微观化。如,成分密度和功能不均匀的梯度材料;可随空间时间条件而变化的智能材料;变形速度快的压电材料以及精细陶瓷材料等都将成为下世纪重要的新材料。材料专家预计,21 世纪新材料品种可能突破100万种。 等离子体物理与核聚变 海水中含有大量的氢和它的
6、同位素氘和氚。氘既重氢,氧化氘就是重水,每一吨海水中含有140克重水。 如果我们将地球海水中所有的氘核能都释放出来,那么它所产生的能量足以提供人类使用数百亿年。但氘和氚的原子核在高温下才能聚合起来释放能量,这个过程称为热核反应,也叫核聚变。 核聚变反应的温度大约需要几亿度,在这样高的温度上,氘氚混合燃料形成高温等离子体态,所以等离子体物理是核聚变反应的理论基础。1986年美国普林斯顿的核聚变研究取得了令人鼓舞的成绩, 他们在TFTR实验装置上进行的超起动放电达到20千电子伏, 远远超过了“点火”要
7、求。1991年11月在英国卡拉姆的JET 实验装置上首次成功地进行了氘氚等离子体聚变试验。在圆形圈内,2亿度的温度下, 氘氚气体相遇爆炸成功,产生了200千瓦的能量,虽然只维持了1.3秒,但这为人类探索新能源——核聚变能的实现迈进了一大步。这是90年代核能研究最有突破性的工作。但目前核聚变反应距实际应用还有相当大的距离,技术上尚有许多难题需要解决,如怎样将等离子加热到如此高的温度?高温等离子体不能与盛装它的容器壁相接触,否则等离子体要降温,容器也会被烧环,这就是如何约束问题。21世纪初有可能在该领域的
8、研究工作中有所突破。 纳米技术向我们走来 所谓纳米技术就是在10[-9]米(即十亿分之一米)水平上,研究应用原子和分子现象及其结构信息的技术。纳米技术的发展使人们有可能在原子分子量级上对物质进行加工,制造出各种东西,使人类开始进入一个可以在纳米尺度范围,人为设计、加工和制造新材料、新器件的时代。粗略的分,纳米技术可分为纳米物理、纳米化学、纳米生物、纳米电子、纳米材料、纳米机械和加工等几方面。 纳米材料具有常规材料所不
此文档下载收益归作者所有