小波变换在图像处理中的应用论文

小波变换在图像处理中的应用论文

ID:7104824

大小:1.45 MB

页数:32页

时间:2018-02-04

小波变换在图像处理中的应用论文_第1页
小波变换在图像处理中的应用论文_第2页
小波变换在图像处理中的应用论文_第3页
小波变换在图像处理中的应用论文_第4页
小波变换在图像处理中的应用论文_第5页
资源描述:

《小波变换在图像处理中的应用论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、小波变换在图像处理中的应用毕业论文目录第一章绪论11.1研究背景11.2研究现状11.3研究意义21.4论文内容与结构2第二章小波变换的基础理论32.1小波变换32.2连续小波变换32.3离散小波变换32.4小波包分析6第三章小波变换在图像处理中的应用73.1小波阈值法进行图像压缩73.1.1实现压缩的主要函数83.1.2实现压缩的算法流程83.2二维小波分析进行图像增强93.2.1实现增强的主要函数103.2.2实现增强的算法流程103.3小波包图像去噪103.3.1实现去噪的主要函数113.3.2实现去噪的算法流程1

2、13.4小波变换用于图像融合123.4.1实现融合的主要函数133.4.2实现融合的算法流程13结论15参考文献16致谢17附录英文文献及翻译18I第一章绪论1.1研究背景近年来,网络技术以及信息技术的快速发展,使得小波变换技术被广泛的应用于图像识别领域和图像处理方面,成为处理信号强有力的工具。小波变换是以克服短时傅立叶变换在单分辨率上的缺陷为基础发展而来的一种新的变换方法。小波变换又被称为多分辨率分析,在时域、频域同时具有良好的表征信号局部特征的能力,因此被广泛地应用于信号处理、语音分析、图像处理和模式识别等专业中。1

3、910年,被Haar首次提出的小波规范正交基是最早的小波基。1936年,Paley与Littlewood通过傅立叶级数对频率进行二进制分量分组,构造了Littlewood-Paley基,这是首次有人提出多尺度分析理念,使得函数的大小不再受傅立叶变换的影响,从而为小波理论的发展铺垫了理论基石。在1946年时,加窗的傅立叶变换理论被Gabor提出,使得对信号的表示具有时域、频域局部变化特征能力,此时虽然不能完全解决傅里叶变换的缺陷,但是已经取得比较好的改善效果。而后,1982年,在分析地质波时,法国地质学家Morlet通过使

4、用高斯余弦函数得到一组函数系,小波分析的概念被首次提出了。1985年,第一个光滑的正交小波被数学家Meyer构建出来。后来,1986年,Meyer与Mallat建立了构造小波基的统一方法,同年,多尺度分析的基本思想被提出。1988年,科学家Daubechies建立了构建正交小波基的通用渠道,提出了首个光滑正交小波基Daubechies基,其具有紧支撑的特点。后来,信号分析专家Mallat构建了著名的快速小波算法--Mallat算法(FWT),提出了多分辨分析的概念。至此,小波理论的发展开始从理论研究走向实际应用方向,并获

5、得突破性的发展,广泛应用于人们的生活中。1.2研究现状人们为了对图像进一步分析并能使用机器更好地自动读取图像数据,并对图像数据进行存储、传输以及显示,由此产生了对图像处理方法的研究。随着科学技术的发展,图像处理技术发展十分迅速。图像处理技术不但已经成功应用在医学和空间项目等高新的领域上,而且在工业、生物科学等其他更多的交叉学科领域中也已广泛的应用。29早在上世纪六十年代,美国喷气推进实验室就运用有效地图像处理技术对太空飞船发回的大批月球照片进行处理了。此后图像处理技术在各行各业都得到了不同速度的发展和应用,例如在宇宙探测

6、中的星体图像处理;在生物医学领域中的细胞分析、各种CT、放射图像等方面的处理;在通信领域中图像信息传输、卫星通信方面的图像压缩处理数据、动态图像序列的传送;以及信息隐藏、数字水印、图像检测、图像识别和检索。目前发展研究趋势表明,图像处理技术以爆炸式速度在增长,并在未来有稳定、长远的发展前景。近年来,图像处理技术的发展带来许多新的图形表示方法,用以适应人类的视觉特性要求,其包括余弦包、边缘小波、脊波、曲线波等。在图像处理领域中,小波变换作为新兴的信号处理技术,在时域频域都有表征信号局部化的能力,多分辨率分析的特性,因此得到

7、了广泛应用。1.3研究意义在小波理论迅速发展的同时,在图像处理方面上,已成熟应用于图像的压缩、增强、去噪、重构、分解、融合等方面。由于小波分析在时间和频率上局部化分析的特点使它优于傅立叶分析。在实际应用中的绝大多数信号是非稳定的,而傅立叶分析较为理想的是处理稳定的信号。小波分析具有类似分析信号的“数学显微镜”的功能,因此可以生成满足不同要求的各种分辨率的图像,可以将图像分层;根据实际应用中对图像信号处理的要求,结合图像的性质,按照实时需求来处理。基于小波变换的优点,使得小波的应用研究在数学、信号处理和图像处理等领域快速地

8、展开。其应用范围包括信号分析、图像处理、电子对抗、计算机识别、地震勘探数据处理、纹理分析、边缘检测、音乐与语音人工合成、军事智能化、医学成像、机械故障诊断等多个方面。1.4论文内容与结构第一章:绪论。主要介绍基于小波变换的图像处理技术的研究背景、现状及意义。第二章:小波变换理论简介。对小波变换相关理论知识进行了简要的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。