资源描述:
《高考数学重难点复习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、难点1集合思想及应用集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.●难点磁场(★★★★★)已知集合A={(x,y)
2、x2+mx-y+2=0},B={(x,y)
3、x-y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围.●案例探究[例1]设A={(x,y)
4、y2-x-1=0},B={(x,y)
5、4x2+2x-2y+5=0},C={(x,y)
6、y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=
7、,证明此结论.命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题.属★★★★★级题目.知识依托:解决此题的闪光点是将条件(A∪B)∩C=转化为A∩C=且B∩C=,这样难度就降低了.错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手.技巧与方法:由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、k∈N,进而可得值.解:∵(A∪B)∩C=,∴A∩C=且B∩C=∵∴k2x2+(2bk-1)x+b2-1=0∵A∩C=∴Δ1=
8、(2bk-1)2-4k2(b2-1)<0∴4k2-4bk+1<0,此不等式有解,其充要条件是16b2-16>0,即b2>1①∵∴4x2+(2-2k)x+(5+2b)=0∵B∩C=,∴Δ2=(1-k)2-4(5-2b)<0∴k2-2k+8b-19<0,从而8b<20,即b<2.5②由①②及b∈N,得b=2代入由Δ1<0和Δ2<0组成的不等式组,得∴k=1,故存在自然数k=1,b=2,使得(A∪B)∩C=.[例2]向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的
9、学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都赞成的学生和都不赞成的学生各有多少人?命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力.属★★★★级题目.知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来.错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系.解:赞成A的人数为50×=30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;
10、赞成事件B的学生全体为集合B.设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为+1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为33-x.依题意(30-x)+(33-x)+x+(+1)=50,解得x=21.所以对A、B都赞成的同学有21人,都不赞成的有8人.●锦囊妙计1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x
11、x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集的特殊性,在解题中,若未能指明集合非空时,要考
12、虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论.●歼灭难点训练一、选择题1.(★★★★)集合M={x
13、x=,k∈Z},N={x
14、x=,k∈Z},则()A.M=NB.MNC.MND.M∩N=2.(★★★★)已知集合A={x
15、-2≤x≤7},B={x
16、m+117、ax2-3x+2=0,a∈R},若A中元素至多有1个,则a的取值范围是_________.4.(★★★★)x、y∈R,A={(x,y)
18、x2+y2=
19、1},B={(x,y)
20、=1,a>0,b>0},当A∩B只有一个元素时,a,b的关系式是_________.三、解答题5.(★★★★★)集合A={x
21、x2-ax+a2-19=0},B={x
22、log2(x2-5x+8)=1},C={x
23、x2+2x-8=0},求当a取什么实数时,A∩B和A∩C=同时成立.6.(★★★★★)已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,)
24、n∈N*},B={(x,y)
25、x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合