课程设计-运动模糊图像的复原算法实现及应用

课程设计-运动模糊图像的复原算法实现及应用

ID:6819023

大小:326.00 KB

页数:21页

时间:2018-01-27

课程设计-运动模糊图像的复原算法实现及应用_第1页
课程设计-运动模糊图像的复原算法实现及应用_第2页
课程设计-运动模糊图像的复原算法实现及应用_第3页
课程设计-运动模糊图像的复原算法实现及应用_第4页
课程设计-运动模糊图像的复原算法实现及应用_第5页
资源描述:

《课程设计-运动模糊图像的复原算法实现及应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、目录第一章、概述31.1图像复原概述31.2图像复原方法4第二章、图像退化的理论基础52.1图像退化的原因52.2图像退化的模型52.1.1连续图像退化的数学模型62.1.2离散图像的退化模型8第三章、运动模糊图像复原的方法与理论93.1运动模糊的基本原理93.2点扩散函数的确定103.2.1几个典型的点扩散函数103.2.2运动模糊点扩散函数的离散化113.3逆滤波复原123.3.1逆滤波复原原理13213.4维纳滤波复原133.4.1纳滤波复原原理143.5有约束最小二乘复原原理15第四章、运动模糊图像复原的实现174.1维纳滤波恢复MATLAB实现174.2维纳滤波复原

2、算法的评价19总结与体会20参考文献2121第一章概述1.1图像复原概述图像复原是数字处理中的一个重要课题。它的主要目的是改善给定的图像质量并尽可能的恢复原图像。图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复被退化图像的本来面目。作为一个实用的图象复原系统,就得提供多种复原算法,使用户可以根据情况来选择最适当的算法以得到最好的复原效果。图象复原关键是要知道图象退化的过程,即要知道图象退化模型,并据此采取相反的过程以求得原始(清晰)象。由于图象中

3、往往伴随着噪声,噪声的存在不仅使图象质量下降,而且也会影响了图象的复原效果。图象复原的目的就是根据图象退化的先验知识,找到一种相应的反过程方法来处理图象,从而尽量得到原来图象的质量,以满足人类视觉系统的要求,以便观赏、识别或者其他应用的需要运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。本设计用PSF对图像进行运动模糊退化处理。

4、211.2图像复原方法图像复原(ImageRestoration)通过逆图像退化的过程将图像恢复为原始图像状态的过程,即图像复原的过程是沿着图像退化的逆向过程进行的。具体过程是:首先根据先验知识分析退化原因,了解图像变质的机理,在此基础上建立一个退化模型,然后用相反的过程对图像进行处理,使图像质量得到改善。对于图像复原,一般可采用两种方法。一种方法是对于图像缺乏先验知识的情况下的复原,此时可对退化过程如模糊和噪声建立数学模型,进行描述,并进而寻找一种支除或削弱其影响的过程;另一种方法是对原始图像已经知道是那些退化因素引起的图像质量下降过程,来建立数学模型,并依据它对图像退化的

5、影响进行拟合的过程。21第二章图像退化的理论基础2.1图像退化的原因在图像的获取(数字化过程)、处理与传输过程中,每一个环节都有可能引起图像质量的下降,这种导致图像质量下降的现象,称为图像退化(ImageDegradation)造成图像退化的原因很多,最为典型的图像退化表现为光学系统的像差、光学成像系统的衍射、成像系统的非线性畸变、摄影胶片感光的非线性、成像过程中物体与摄像设备之间的相对运动、大气湍流效应、图像传感器的工作情况受环境随机噪声的干扰、成像光源或射线的散射、处理方法的缺陷,以及所用的传输信道受到污染等。这些因素都会使成像的分辨率和对比度以至图像质量下降。由于引起图

6、像退化的因素众多而且性质不同,因此,图像复原的方法、技术也为相同。2.2图像退化的模型图像复原的关键在于建立退化模型。假设输入图像经过某个退化系统后产生退化图像,在退化过程中,引进的随机噪声为加性噪声(若不是加性噪声是乘性噪声,可以用对数转换方式转化为相加形式),则图像退化过程空间域模型如图所示21图像退化模型其一般表达式为:或者表示成:式中:“*”表示空间卷积。这是连续形式下的表达。h(x,y)退化函数的空间描述,它综合了所有的退化因素,h(x,y)也称为成像系统的冲击响应或点扩展函数。式中的H[f(x,y)]表示对输入图像f(x,y)退化算子。对于频域上的图像退化模型如图

7、所示,由于空间域上的卷积等同于频域上的乘积,因此可以把退化模型写成如下的频域表示:式中:G(u,v)、F(u,v)、N(u,v)分别是g(x,y)、f(x,y)、n(x,y)的傅里叶变换,称为系统在频率上的传递函数。2.2.1连续图像的退化的数学模型图像复原前,如图所示,图像退化的输入输出可以表示为:现在,假设加性噪声n(x,y)=0,则退化图像。如果:则系统H是一个线性系统。式中,k1和k2是比例常数,f1(x,y)和f2(x,y)是任意两幅输入图像。对于任意输入图像f(x,y)以及坐标值α和β,如果

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。