欢迎来到天天文库
浏览记录
ID:6735242
大小:60.00 KB
页数:2页
时间:2018-01-23
《高中数学 1.3.3《函数的最大值与最小值(一)》教案7 新人教a版选修2-2》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、1.3.3函数的最大值与最小值(一)一、教学目标:理解并掌握函数最大值与最小值的意义及其求法.弄请函数极值与最值的区别与联系.养成“整体思维”的习惯,提高应用知识解决实际问题的能力.二、教学重点:求函数的最值及求实际问题的最值.教学难点:求实际问题的最值.掌握求最值的方法关键是严格套用求最值的步骤,突破难点要把实际问题“数学化”,即建立数学模型.三、教学过程:(一)复习引入1、问题1:观察函数f(x)在区间[a,b]上的图象,找出函数在此区间上的极大值、极小值和最大值、最小值.2、问题2:观察函数f(x)在区间[a,b]上的图象,找出函数在此区间上的极大
2、值、极小值和最大值、最小值.(见教材P30面图1.3-14与1.3-15)3、思考:⑴极值与最值有何关系?⑵最大值与最小值可能在何处取得?⑶怎样求最大值与最小值?4、求函数y=在区间[0,3]上的最大值与最小值.(二)讲授新课1、函数的最大值与最小值一般地,设y=f(x)是定义在[a,b]上的函数,在[a,b]上y=f(x)的图象是一条连续不断的曲线,那么它必有最大值与最小值。函数的极值是从局部考察的,函数的最大值与最小值是从整体考察的。2、求y=f(x)在[a,b]上的最大值与最小值,可分为两步进行:⑴求y=f(x)在(a,b)内的极值;⑵将y=f(x
3、)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.例1.求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.解:y'=4x3-4x=4x(x+1)(x-1)令y'=0,即4x(x+1)(x-1)=0,解得x=-1,0,1.当x变化时,y',y的变化情况如下表:故当x=±2时,函数有最大值13,当x=±1时,函数有最小值4.练习例2.求函数y=在区间[-2,]上的最大值与最小值.例3.求函数的最大值和最小值.-2-用心爱心专心例4.求函数的最大值和最小值.(三)课堂小结已知函数解析式,确定可导函数在区间[a,b]上
4、最值的方法;(四)课后作业-2-用心爱心专心
此文档下载收益归作者所有