国际数学奥林匹克试题分类解析—a数论_a3数字问题

ID:6702929

大小:76.50 KB

页数:8页

时间:2018-01-22

国际数学奥林匹克试题分类解析—a数论_a3数字问题_第1页
国际数学奥林匹克试题分类解析—a数论_a3数字问题_第2页
国际数学奥林匹克试题分类解析—a数论_a3数字问题_第3页
国际数学奥林匹克试题分类解析—a数论_a3数字问题_第4页
国际数学奥林匹克试题分类解析—a数论_a3数字问题_第5页
资源描述:

《国际数学奥林匹克试题分类解析—a数论_a3数字问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、A整数A3数字问题A3-001在数3000003中,应把它的百位数字和万位数字0换成什么数字,才能使所得的数能被13整除?【题说】1950年~1951年波兰数学奥林匹克三试题2.【解】设所求数字为x和y,则有因为106、104、102除以13时,分别得余数1、3、9,所以n≡3+3x+9y+3=3(2+x+3y)(mod13)当且仅当x+3y+2被13整除,即x+3y+2=13m(m为自然数)(1)时,n被13整除.由于x+3y+2≤9+3·9+2=38所以m只能取1或2.当m=1时,由方程(1)及0≤x,y≤9,解得x=8,y=1;x=5,y=2;x=2,y=3当

2、m=2时,解得x=9,y=5;x=6,y=6;x=3,y=7;x=0,y=8.故本题共有7个解:3080103,3050203,3020303,3090503,3060603,3030703,3000803.A3-002求出所有这样的三位数,使其被11整除后的商数等于该三位数各位数字的平方和.【题说】第二届(1960年)国际数学奥林匹克题1.本题由保加利亚提供.【解】设这个三位数除以11以后的商为10a+b,其中a是商的十位数,b是商的个位数.若a+b≥10,则原数为100(a+1)+10(a+b-10)+b若a+b<10,则原数为100a+10(a+b)+b以下对

3、这两种情形分别讨论.先考虑第一种情形.由题设有(a+1)2+(a+b-10)2+b2=10a+b(1)若a+b>10,则有(a+1)2+(a+b-10)2+b2≥(a+1)2+1+(11-a)2故若(1)式成立,只能有a+b=10.将b=10-a代入(1)解得唯一的一组正整数解a=7,b=3再考虑第二种情形.此时由题设有a2+(a+b)2+b2=10a+b(2)若a+b>5,则有a2+(a+b)2+b2=2(a+b)·a+2b2>10a+b故若(2)成立,只能有a+b≤5.注意在(2)式中左边和10a都是偶数;因此b也是偶数.若a+b<5,则b只能为2,将b=2代入

4、(2)得不到整数解,因此只能有a+b=5.将b=5-a代入(2)得唯一的一组正整数解a=5,b=0综上所述,合乎要求的三位数只有550,803.A3-003下面是一个八位数除以一个三位数的算式,试求商,并说明理由.【题说】1958年上海市赛高三题1.【解】原式可写成:其中所有未知数都表示数字,且下标为1的未知数都不等于零.x1x2x3等表示x1·102+x2·10+x3等.(1)因为得到商的第一个数字7后,同时移下两个数字a5、a6,所以y2=0,同理y4=0.(2)四位数a1a2a3a4与三位数b1b2b3之差为两位数c1c2,所以a1=1,a2=0,b1=9,同

5、理,c1=1,c2=0,d1=9,于是a4=b3,b2=9,a3=0.(3)由7×x1x2x3=99b3,所以x1=1,x2=4.990-7×140=10,所以x3=2,b3=4,从而a4=b3=4.(4)由c1=1,c2=0可知y3=7.(5)y5×142是四位数,所以x5≥8.又因y5×142的末位数字是8,所以y5=9.于是商为70709,除数142,从而被除数为10040678.A3-004证明:在任意39个连续的自然数中,总能找到一个数,它的数字之和被11整除.【题说】1961年全俄数学奥林匹克八年级题3.【证】在任意39个连续自然数中,一定有三个数末位数

6、字为0,而前两个数中一定有一个十位数字不为9,设它为N,N的数字之和为n,则N,N+1,N+2,…,N+9,N+19这11个数的数字之和依次为n,n+1,n+2,…,n+9,n+10,其中必有一个是11的倍数.【注】39不能改为38.例如999981至1000018这38个连续自然数中,每个数的数字和都不被11整除.本题曾被改编为匈牙利1986年竞赛题、北京市1988年竞赛题.A3-005求有下列性质的最小自然数n:其十进制表示法以6结尾;当去掉最后一位6并把它写在剩下数字之前,则成为n的四倍数.【题说】第四届(1962年)国际数学奥林匹克题1.本题由波兰提供.【解

7、】设n=10m+6,则6×10p+m=4(10m+6),其中p为m的位数.于是m=2(10p-4)/13,要使m为整数,p至少为5,此时,n=153846.A3-006公共汽车票的号码由六个数字组成.若一张票的号码前三个数字之和等于后三个数字之和,则称它是幸运的.证明:所有幸运车票号码的和能被13整除.【题说】1965年全俄数学奥林匹克八年级题4.【证】设幸运车票的号码是A,则A′=999999-A也是幸运的,且A≠A′.因为A+A′=999999=999×1001含因数13.而所有幸运号码都能如此两两配对.所以所有幸运号码之和能被13整除.A3-007自然数k

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《国际数学奥林匹克试题分类解析—a数论_a3数字问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、A整数A3数字问题A3-001在数3000003中,应把它的百位数字和万位数字0换成什么数字,才能使所得的数能被13整除?【题说】1950年~1951年波兰数学奥林匹克三试题2.【解】设所求数字为x和y,则有因为106、104、102除以13时,分别得余数1、3、9,所以n≡3+3x+9y+3=3(2+x+3y)(mod13)当且仅当x+3y+2被13整除,即x+3y+2=13m(m为自然数)(1)时,n被13整除.由于x+3y+2≤9+3·9+2=38所以m只能取1或2.当m=1时,由方程(1)及0≤x,y≤9,解得x=8,y=1;x=5,y=2;x=2,y=3当

2、m=2时,解得x=9,y=5;x=6,y=6;x=3,y=7;x=0,y=8.故本题共有7个解:3080103,3050203,3020303,3090503,3060603,3030703,3000803.A3-002求出所有这样的三位数,使其被11整除后的商数等于该三位数各位数字的平方和.【题说】第二届(1960年)国际数学奥林匹克题1.本题由保加利亚提供.【解】设这个三位数除以11以后的商为10a+b,其中a是商的十位数,b是商的个位数.若a+b≥10,则原数为100(a+1)+10(a+b-10)+b若a+b<10,则原数为100a+10(a+b)+b以下对

3、这两种情形分别讨论.先考虑第一种情形.由题设有(a+1)2+(a+b-10)2+b2=10a+b(1)若a+b>10,则有(a+1)2+(a+b-10)2+b2≥(a+1)2+1+(11-a)2故若(1)式成立,只能有a+b=10.将b=10-a代入(1)解得唯一的一组正整数解a=7,b=3再考虑第二种情形.此时由题设有a2+(a+b)2+b2=10a+b(2)若a+b>5,则有a2+(a+b)2+b2=2(a+b)·a+2b2>10a+b故若(2)成立,只能有a+b≤5.注意在(2)式中左边和10a都是偶数;因此b也是偶数.若a+b<5,则b只能为2,将b=2代入

4、(2)得不到整数解,因此只能有a+b=5.将b=5-a代入(2)得唯一的一组正整数解a=5,b=0综上所述,合乎要求的三位数只有550,803.A3-003下面是一个八位数除以一个三位数的算式,试求商,并说明理由.【题说】1958年上海市赛高三题1.【解】原式可写成:其中所有未知数都表示数字,且下标为1的未知数都不等于零.x1x2x3等表示x1·102+x2·10+x3等.(1)因为得到商的第一个数字7后,同时移下两个数字a5、a6,所以y2=0,同理y4=0.(2)四位数a1a2a3a4与三位数b1b2b3之差为两位数c1c2,所以a1=1,a2=0,b1=9,同

5、理,c1=1,c2=0,d1=9,于是a4=b3,b2=9,a3=0.(3)由7×x1x2x3=99b3,所以x1=1,x2=4.990-7×140=10,所以x3=2,b3=4,从而a4=b3=4.(4)由c1=1,c2=0可知y3=7.(5)y5×142是四位数,所以x5≥8.又因y5×142的末位数字是8,所以y5=9.于是商为70709,除数142,从而被除数为10040678.A3-004证明:在任意39个连续的自然数中,总能找到一个数,它的数字之和被11整除.【题说】1961年全俄数学奥林匹克八年级题3.【证】在任意39个连续自然数中,一定有三个数末位数

6、字为0,而前两个数中一定有一个十位数字不为9,设它为N,N的数字之和为n,则N,N+1,N+2,…,N+9,N+19这11个数的数字之和依次为n,n+1,n+2,…,n+9,n+10,其中必有一个是11的倍数.【注】39不能改为38.例如999981至1000018这38个连续自然数中,每个数的数字和都不被11整除.本题曾被改编为匈牙利1986年竞赛题、北京市1988年竞赛题.A3-005求有下列性质的最小自然数n:其十进制表示法以6结尾;当去掉最后一位6并把它写在剩下数字之前,则成为n的四倍数.【题说】第四届(1962年)国际数学奥林匹克题1.本题由波兰提供.【解

7、】设n=10m+6,则6×10p+m=4(10m+6),其中p为m的位数.于是m=2(10p-4)/13,要使m为整数,p至少为5,此时,n=153846.A3-006公共汽车票的号码由六个数字组成.若一张票的号码前三个数字之和等于后三个数字之和,则称它是幸运的.证明:所有幸运车票号码的和能被13整除.【题说】1965年全俄数学奥林匹克八年级题4.【证】设幸运车票的号码是A,则A′=999999-A也是幸运的,且A≠A′.因为A+A′=999999=999×1001含因数13.而所有幸运号码都能如此两两配对.所以所有幸运号码之和能被13整除.A3-007自然数k

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭