初中数学代数复习公式与根式

初中数学代数复习公式与根式

ID:6701662

大小:282.50 KB

页数:6页

时间:2018-01-22

初中数学代数复习公式与根式_第1页
初中数学代数复习公式与根式_第2页
初中数学代数复习公式与根式_第3页
初中数学代数复习公式与根式_第4页
初中数学代数复习公式与根式_第5页
资源描述:

《初中数学代数复习公式与根式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、一、数与式的运算一)、必会的乘法公式【公式1】证明:等式成立【例1】计算:解:原式=说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.【公式2】(立方和公式)证明:说明:请同学用文字语言表述公式2.【例2】计算:(2a+b)(4a2-2ab+b2)=8a3+b3【公式3】(立方差公式)1.计算(1)(3x+2y)(9x2-6xy+4y2)=(2)(2x-3)(4x2+6xy+9)=(3)=(4)(a+b)(a2-ab+b2)(a-b)(a2+ab+b2)=2.利用立方和、立方差公式进行因式分解(1)27m3-n3=(2)27m3-n3=(3)x3-125=(4)m6-n6=【公式4】【公

2、式5】【例3】计算:(1)(2)(3)(4)解:(1)原式=(2)原式=(3)原式=(4)原式=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知,求的值.解:原式=说明:本题若先从方程中解出的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知,求的值.解:原式=①②,把②代入

3、①得原式=说明:注意字母的整体代换技巧的应用.二)、必会的根式式子叫做二次根式,其性质如下:(1)(2)(3)(4)【例6】化简下列各式:(1)(2)解:(1)原式=*(2)原式=【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)(3)(4)解:(1)=(2)原式=(3)原式=(4)原式=说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(如)或被开方数有分母(如).这时可将

4、其化为形式(如可化为),转化为“分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如化为,其中与叫做互为有理化因式).有理化因式和分母有理化有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。如与;与互为有理化因式。分母有理化:在分母含有根式的式子里,把分母中的根式化去,叫做分母有理化。【例8】计算:(1)(2)解:(1)原式=(2)原式=说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.【例9】设,求的值.解:原式=说明:有关代数式的求值问题:(1)先化

5、简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.数与式的运算专练1.二次根式成立的条件是()A.B.C.D.是任意实数2.若,则的值是()A.-3B.3C.-9D.93.计算:(1)(2)(3)(4)4.化简(下列的取值范围均使根式有意义):(1)(2)(3)(4)5.化简:(1)(2)6.若,则的值为():A.B.C.D.7.设,求代数式的值.8.已知,求代数式的值.9.设,求的值.10.化简或计算:(1)(2)(3)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。