欢迎来到天天文库
浏览记录
ID:6663046
大小:29.50 KB
页数:7页
时间:2018-01-21
《计算机人工神经网络在医学领域的应用现状与展望》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、计算机人工神经网络在医学领域的应用现状与展望计算机人工神经网络在医学领域的应用现状与展望计算机人工神经网络是一门应用广泛,涉及多学科交叉、综合的前沿学科。人工神经网络是在对人脑神经网络的基本研究的基础上,采用数理方法和信息处理的角度对人脑神经网络进行抽象,并建立的某种简化模型。突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。近20年来,神经网络的软件模拟得到了广泛研究和
2、应用,发展速度惊人。由于人体与疾病的复杂性,不可预测性,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。在麻醉与危重医学相关领域的研究涉及到多生理变量的分析与预测,从临床数据中发现一些尚未发现或尚无确切证据的关系与现象,信号处理,干扰信号的自动区分检测,各种临床状况的预测,单独或结合其他人工智能技术进行麻醉闭环控制等。在围术期和重症监护与治疗阶段,需要获取大量的信息,将可能在信号处理、基于动态数据驱动的辅助决策专家系统、数据挖掘、各种临床状况的预测、智能化床旁监护、远程医疗与教学、医疗机器人等各方面广
3、泛运用到人工神经网络技术和其他人工智能技术。一、概述人工神经网络(ArtificialNeuralNetwork,ANN)是人工智能(ArtificialIntelligence,AI)学科的重要分支。经过50多年的发展,已成为一门应用广泛,涉及神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学等多学科交叉、综合的前沿学科。现代计算机的计算构成单元的速度为纳秒级,人脑中单个神经细胞的反应时间为毫秒级,计算机的运算能力为人脑的几百万倍。可是,迄今为止,计算机在解决一些人可以轻而易举完成的简单任务时,例如视觉、听觉、嗅觉,或如人脸识别、骑自行车、打球等涉及联想或经验
4、的问题时却十分迟钝。也不具备人脑的记忆与联想能力,学习与认知能力,信息的逻辑和非逻辑加工能力,信息综合判断能力,快速的高度复杂信息处理速度等。造成这种问题的根本原因在于,计算机与人脑采取的信息处理机制完全不同。迄今为止的各代计算机都是基于冯*纽曼工作原理:其信息存储与处理是分开的;处理的信息必须是形式化信息,即用二进制编码定义;而信息处理的方式必须是串行的。这就决定了它只擅长于数值和逻辑运算。而构成脑组织的基本单元是神经元,每个神经元有数以千计的通道同其他神经元广泛相互连接,形成复杂的生物神经网络。生物神经网络以神经元为基本信息处理单元,对信息进行分布式存储与加工,这种信息加工与存
5、储相结合的群体协同工作方式使得人脑呈现出目前计算机无法模拟的神奇智能。人工神经网络就是在对人脑神经网络的基本研究的基础上,采用数理方法和信息处理的角度对人脑神经网络进行抽象,并建立的某种简化模型。一个人工神经网络是由大量神经元节点互连而成的复杂网络,用以模拟人类进行知识的表示与存储以及利用知识进行推理的行为。一个基于人工神经网络的智能系统是通过学习获取知识后建立的,它通过对大量实例的反复学习,由内部自适应机制使神经网络的互连结构及各连接权值稳定分布,这就表示了经过学习获得的知识。人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个
6、信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。近20年来,神经网络的软件模拟得到了广泛研究和应用,发展速度惊人。1987年在圣地亚哥召开了首届国际神经网络大会,国际神经网络联合会(INNS)宣告成立。这标志着世界范围内掀起神经网络开发研究热潮的开始。计算机人工神经网络在医学领域的应用现状与展望(2)
7、二、医学领域应用现状与前景由于人体与疾病的复杂性,不可预测性,在生物信号与信息的表现形式、变化规律(自身变化与医学干预后变化),对其检测与信号表达,获取的数据及信息的分析、决策等诸多方面均存在大量复杂的非线性关系,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。1、信号处理:在生物医学信号的检测和分析处理中主要集中对心电、脑电、肌电、胃肠电等信号的识别,脑电信号的分析,听觉诱发电位信号的
此文档下载收益归作者所有