欢迎来到天天文库
浏览记录
ID:6614422
大小:50.50 KB
页数:8页
时间:2018-01-20
《行测备考:十大速算技巧24552》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、速算技巧之一估算法“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方式多样,需要各位考生在实战中多加训练与掌握。进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。速算技巧之二直除法“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“
2、极易操作”性。“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。【例1】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是()。【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中
3、最小的数是32895/4701。一分钟速算提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。【例2】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a小的数。【解析】只有6874.32/760.31比9大,所以四个数当中最大的数是6874.32/760.31。【例2】5794.1/27591.43、3482.2/15130.87、4988.7/20788.33、6881.3/26458.46中
4、最大的数是()。【解析】本题直接用“直除法”很难直接看出结果,我们考虑这四个数的倒数:27591.43/5794.1、15130.87/3482.2、20788.33/4988.7、26458.46/6881.3,利用直除法,它们的首位分别为“4”、“4”、“4”、“3”,所以四个倒数当中26458.46/6881.3最小,因此原来四个数当中6881.3/26458.46最大。【例4】阅读下面饼状图,请问该季度第一车间比第二车间多生产多少?()A.38.5%B.42.8%C.50.1%D.63.4%【解析】5632-3945/3945=1687/3945=0.4+=40%+,所以选B。【例5】
5、某地区去年外贸出口额各季度统计如下,请问第二季度出口额占全年的比例为多少?()第一季度第二季度第三季度第四季度全年出口额(亿元)457356983495384217608A.29.5%B.32.4%C.33.7%D.34.6%【解析】5698/17608=0.3+=30%+,其倒数17608/5698=3+,所以5698/17608=(1/3)-,所以选B。【例6】根据下图资料,己村的粮食总产量为戊村粮食总产量的多少倍?()A.2.34B.1.76C.1.57D.1.32【解析】直接通过直除法计算516.1÷328.7:根据首两位为1.5*得到正确答案为C。速算技巧之三截位法所谓“截位法”,是
6、指“在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果”的速算方式。在加法或者减法中使用“截位法”时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与错位),知道得到选项要求精度的答案为止。在乘法或者除法中使用“截位法”时,为了使所得结果尽可能精确,需要注意截位近似的方向:一、扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;二、扩大(或缩小)被除数,则需扩大(或缩小)除数。如果是求“两个乘积的和或者差(即a*b+/-c*d),应该注意:三、扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;四、扩大(或缩小)减号的一
7、侧,则需扩大(或缩小)减号的另一侧。到底采取哪个近似方向由相近程度和截位后计算难度决定。一般说来,在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方向的要求。所以应用这种方法时,需要考生在做题当中多加熟悉与训练误差的把握,在可以使用其它方
此文档下载收益归作者所有