必修5 解三角形的应用举例

必修5 解三角形的应用举例

ID:6593330

大小:396.00 KB

页数:11页

时间:2018-01-19

必修5 解三角形的应用举例_第1页
必修5 解三角形的应用举例_第2页
必修5 解三角形的应用举例_第3页
必修5 解三角形的应用举例_第4页
必修5 解三角形的应用举例_第5页
资源描述:

《必修5 解三角形的应用举例》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第2讲解三角形应用举例★知识梳理★1.已知两角和一边(如A、B、C),由A+B+C=π求C,由正弦定理求a、b.2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C=π,求另一角.3.已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C=π求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况.4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C=π,求角C.5.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成.正北或

2、正南,北偏东××度,北偏西××度,南偏东××度,南偏西××度.6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角.如图中OD、OE是视线,是仰角,是俯角.7.关于三角形面积问题①=aha=bhb=chc(ha、hb、hc分别表示a、b、c上的高);②=absinC=bcsinA=acsinB;③=2R2sinAsinBsinC.(R为外接圆半径)④=;⑤=,;⑥=·,(r为△ABC内切圆的半径)★重难点突破★1.重点:熟练掌握正弦定理、余弦定理和面积公式,结合几何性质建模解决生活中的应用问题2.难点:实际问题向

3、数学问题转化思路的确定3.重难点:熟练掌握解斜三角形的方法.,熟悉实际问题向数学问题的转化的方法;(1)解三角函数应用题要通过审题领会其中的数的本质,将问题中的边角关系与三角形联系起来,确定以什么样的三角形为模型,需要哪些定理或边角关系列出等量或不等量关系的解题思路,然后寻求变量之间的关系,也即抽象出数学问题,问题1.如图,为了计算北江岸边两景点与的距离,由于地形的限制,需要在岸上选取和两个测量点,现测得,,,,,求两景点与的距离(假设在同一平面内,测量结果保留整数;参考数据:)解:在△ABD中,设BD=x,则,即整理得:解之:,(舍去),由正弦定理,得:,∴≈11(km

4、).答:两景点与的距离约为11.km.(2)解三角函数应用题要要充分运用数形结合的思想、图形语言和符号语言等方式来思考解决问题;再次,讨论对数学模型的性质对照讨论变量的性质,从而得到的是数学参数值;最后,按题目要求作出相应的部分问题的结论.问题2.用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测角仪的高度是b,求气球的高度.分析:在Rt△EGA中求解EG,只有角α一个条件,需要再有一边长被确定,而△EAC中有较多已知条件,故可在△EAC中考虑EA边长的求解,而在△EAC中有角β,∠EAC=180°

5、-α两角与BD=a一边,故可以利用正弦定理求解EA.解:在△ACE中,AC=BD=a,∠ACE=β,∠AEC=α-β,根据正弦定理,得AE=在Rt△AEG中,EG=AEsinα=∴EF=EG+b=+b,答:气球的高度是+b.★热点考点题型探析★考点1:测量问题题型:运用正、余弦定理解决测量问题[例1](2007·山东)如图4-4-12,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?【解题思路】

6、解决测量问题的过程先要正确作出图形,把实际问题中的条件和所求转换成三角形中的已知和未知的边、角.本题应先利用求出边长,再进行进一步分析.北甲乙[解析]如图,连结,由已知,,,又,图4-4-12是等边三角形,,由已知,,,在中,由余弦定理,..因此,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.【名师指引】解三角形时,通常会遇到两种情况:①已知量与未知量全部集中在一个三角形中,此时应直接利用正弦定理或余弦定理;②已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.【新题导练】AB1.甲船在A处、乙船在甲船

7、正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向南偏西60o方向行驶,问经过多少小时后,甲、乙两船相距最近?解析:、解:ABDC此时,甲、乙两船相距最近2.在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°的方向把球击出,根据经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍,问按这样的布置,游击手能不能接着球?(如图所示)解:设游击手能接着球,接球点为B,而游击手从点A跑出,本垒为O点(如图所示).设从击出球到接着球的时间为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。