欢迎来到天天文库
浏览记录
ID:6455935
大小:1.62 MB
页数:60页
时间:2018-01-14
《材料科学基础_武汉理工出版(部分习题答案)[1]》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第一章结晶学基础第二章晶体结构与晶体中的缺陷1名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.答:配位数:晶体结构中与一个离子直接相邻的异号离子数。配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。多晶
2、转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1MgO晶体中
3、不同晶面的氧离子排布示意图 2面排列密度的定义为:在平面上球体所占的面积分数。(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;(b)计算这三个晶面的面排列密度。解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。(b)在面心立方紧密堆积的单位晶胞中,(111)面:面排列密度=(110)面:面排列密度=(100)面:面排列密度=3、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶
4、体结构的堆积系数与密度。解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。rO2-=0.140nm,rMg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πrO2-3+4/3×πrMg2+3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。4、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。解:(1)h:k:l=1/2:1
5、/3:1/6=3:2:1,∴该晶面的米勒指数为(321);(2)(321)5试证明等径球体六方紧密堆积的六方晶胞的轴比c/a≈1.633。证明:六方紧密堆积的晶胞中,a轴上两个球直接相邻,a0=2r;c轴方向上,中间的一个球分别与上、下各三个球紧密接触,形成四面体,如图2-2所示:60图2-2六方紧密堆积晶胞中有关尺寸关系示意图6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。解:体心:原子数2,配位数8,堆积密度55.5%; 面心:原子数4,配位数6,堆积密度74.04%; 六方:原子数6,配位数6,堆积密度74.04%。
6、7设原子半径为R,试计算体心立方堆积结构的(100)、(110)、(111)面的面排列密度和晶面族的面间距。解:在体心立方堆积结构中:(100)面:面排列密度=面间距=(110)面:面排列密度=面间距=(111)面:面排列密度=面间距=8、以NaCl晶胞为例,试说明面心立方紧密堆积中的八面体和四面体空隙的位置和数量。答:以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,它的正下方有1个八面体空隙(体心位置),与其对称,正上方也有1个八面体空隙;前后左右各有1个八面体空隙(棱心位置)。所以共有6个八面体空隙与其直接相邻,由于每个八面体空隙由6
7、个球构成,所以属于这个球的八面体空隙数为6×1/6=1。在这个晶胞中,这个球还与另外2个面心、1个顶角上的球构成4个四面体空隙(即1/8小立方体的体心位置);由于对称性,在上面的晶胞中,也有4个四面体空隙由这个参与构成。所以共有8个四面体空隙与其直接相邻,由于每个四面体空隙由4个球构成,所以属于这个球的四面体空隙数为8×1/4=2。9、临界半径比的定义是:紧密堆积的阴离子恰好互相接触,并与中心的阳离子也恰好接触的条件下,阳离子半径与阴离子半径之比。即每种配位体的阳、阴离子半径比的下限。计算下列配位的临界半径比:(a)立方体配位;(b)八面体配位;(
8、c)四面体配位;(d)三角形配位。解:(1)立方体配位在立方体的对角线上正、负离子相互接触,在立方体的棱上两个负离子相互接
此文档下载收益归作者所有