集散式光伏逆变系统为何可提高3%的发电量

集散式光伏逆变系统为何可提高3%的发电量

ID:6443135

大小:805.15 KB

页数:4页

时间:2018-01-14

集散式光伏逆变系统为何可提高3%的发电量_第1页
集散式光伏逆变系统为何可提高3%的发电量_第2页
集散式光伏逆变系统为何可提高3%的发电量_第3页
集散式光伏逆变系统为何可提高3%的发电量_第4页
资源描述:

《集散式光伏逆变系统为何可提高3%的发电量》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、No.1Big-bit半导体器件应用网http://ic.big-bit.com/news/191430_p2.html集散式光伏逆变系统为何可提高3%的发电量【大比特导读】集散式光伏逆变系统是集中逆变、分散式跟踪的并网方案,其在传统的光伏汇流箱内部增加DC/DC升压变换硬件单元和MPPT控制软件单元,实现了每2~4串PV组件对应1路MPPT的分散跟踪功能,大大降低了组件参数不一致、局部阴影、仰角差异等导致的效率损失。方案简介集散式光伏逆变系统是集中逆变、分散式跟踪的并网方案,其在传统的光伏汇流箱内部增加DC/DC升压变换硬件单元和MPPT控制软件单元,

2、实现了每2~4串PV组件对应1路MPPT的分散跟踪功能,大大降低了组件参数不一致、局部阴影、仰角差异等导致的效率损失。同时改进的光伏汇流箱(光伏控制器)输出电压升高到820V后,至逆变室集中逆变,且逆变器的交流输出电压升高到520V,从而减小交直流线缆传输损耗和逆变器的自身发热损耗。如下图: 禾望集散式逆变器——1MW系统示意图效率提升分析集散式方案的直流侧远距离传输电压由传统的450V~700V波动电压(18串PV对应电压低,22串对应电压高;夏天电压低,冬天电压高)提高到稳定的820V,逆变器的交流输出电压,由传统的270V/315V提高到520V,

3、因此在同等运行条件下,集散式方案对应的损耗比集中式的大幅下降。详细计算如下:1)直流侧传输损耗对比,以平均距离50m计算,假定传统方案的直流侧工作电压600Vdc,集散式方案820Vdc,两组的损耗差为:No.4Big-bit半导体器件应用网 2)交流侧传输损耗对比,以平均距离15m计算,假定假定传统方案的交流侧工作电压315Vac,集散式方案520Vac,两组的损耗差为:  3)逆变器的损耗差对比:  备注:集散式方案的1MW逆变器额定电流为1110A,与单台500k的额定电流近似,所以损耗也与单台500kW近似。4)光伏控制器与传统汇流箱的损耗对比。

4、传统带防反光伏汇流箱效率一般为99.8%,集散式方案配套使用的光伏控制器效率99.5%,因此相比传统方案,光伏控制器比普通防反汇流箱效率降低0.3%。小结:相比传统集中式方案,集散式方案在交直流电缆传输效率、逆变器转换效率环节提升了1%以上,如下表所列: No.4Big-bit半导体器件应用网 表:传统集中式方案与集散式方案效率对比总结5)集散式方案每2~4串PV组件对应1路MPPT,对应1MW包含约100路的MPPT数量,为传统集中式的10倍以上。理论上讲,如果所有的组件参数一致、安装环境一致、安装仰角一致,则多路MPPT并不能带来更多的发电量,但是从

5、工程的角度分析,每1MW包含约30亩地、4000块PV组件板,其组件的参数、安装地质环境以及工程施工不可能做到完全一致,这就必然会导致PV组串的并联失配问题。 小结:从工程的角度以及试验统计数据来看,一般认为多路MPPT方案比传统单路MPPT的集中式方案可以提高2%的系统发电量。方案对比总结 No.4Big-bit半导体器件应用网 综合上述分析,集散式方案通过系统优化及合理的软硬件设计,可提高系统整体发电效率3%,约合每年多发电5万度/MW。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。